1
|
Chen Q, Lønborg C, Chen F, Zhang R, Cai R, Li Y, He C, Shi Q, Jiao N, Zheng Q. Bottom-up and top-down controls on Alteromonas macleodii lead to different dissolved organic matter compositions. ISME COMMUNICATIONS 2024; 4:ycae010. [PMID: 38469454 PMCID: PMC10926778 DOI: 10.1093/ismeco/ycae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/24/2023] [Accepted: 01/19/2024] [Indexed: 03/13/2024]
Abstract
The effects of both bottom-up (e.g. substrate) and top-down (e.g. viral lysis) controls on the molecular composition of dissolved organic matter have not been investigated. In this study, we investigated the dissolved organic matter composition of the model bacterium Alteromonas macleodii ATCC 27126 growing on different substrates (glucose, laminarin, extracts from a Synechococcus culture, oligotrophic seawater, and eutrophic seawater), and infected with a lytic phage. The ultra-high resolution mass spectrometry analysis showed that when growing on different substrates Alteromonas macleodii preferred to use reduced, saturated nitrogen-containing molecules (i.e. O4 formula species) and released or preserved oxidized, unsaturated sulfur-containing molecules (i.e. O7 formula species). However, when infected with the lytic phage, Alteromonas macleodii produced organic molecules with higher hydrogen saturation, and more nitrogen- or sulfur-containing molecules. Our results demonstrate that bottom-up (i.e. varying substrates) and top-down (i.e. viral lysis) controls leave different molecular fingerprints in the produced dissolved organic matter.
Collapse
Affiliation(s)
- Qi Chen
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, 361102, China
| | - Christian Lønborg
- Section for Marine Diversity and Experimental Ecology, Department of Ecoscience, Aarhus University, 4000 Roskilde, Denmark
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD 21202, United States
| | - Rui Zhang
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, 361102, China
| | - Ruanhong Cai
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, 361102, China
| | - Yunyun Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, China
| | - Nianzhi Jiao
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, 361102, China
| | - Qiang Zheng
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, 361102, China
| |
Collapse
|