1
|
Hu H, Geng S, Zhu Y, He X, Pan X, Yang M. Seed-Borne Endophytes and Their Host Effects. Microorganisms 2025; 13:842. [PMID: 40284678 PMCID: PMC12029701 DOI: 10.3390/microorganisms13040842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/31/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025] Open
Abstract
In the process of long-term co-evolution, endophytes and host plants benefit from and interact with each other, resulting in positive effects such as promoting plant growth, enhancing resistance, producing beneficial secondary metabolites, and negative effects such as carrying pathogens and producing toxins. In addition to the vegetative organs, plant seeds are also colonized by diverse endophytes and serve as vectors for the transmission of endophytes across plant generations. Seed endophytes, termed seed-borne endophytes (SBEs), have attracted much attention because these endophytes are involved in the assembly of the plant association microbiome and exert effects on progeny plants through vertical transfer. However, the importance of SBEs may still be underestimated. The present paper reviews the diversity, origin, and vertical transmission of seed endophytes, as well as their interaction and function with hosts, so as to provide a reference for future research and application of seed endophytes.
Collapse
Affiliation(s)
- Hongyan Hu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (H.H.); (S.G.)
- Institute of International Rivers and Ecological Security, Yunnan University, Kunming 650504, China
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China;
- Southwest United Graduate School, Kunming 650092, China
| | - Shucun Geng
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (H.H.); (S.G.)
| | - Youyong Zhu
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China;
- Southwest United Graduate School, Kunming 650092, China
| | - Xiahong He
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China;
| | - Xiaoxia Pan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming 650504, China
| | - Mingzhi Yang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (H.H.); (S.G.)
| |
Collapse
|
2
|
Russell D, Rajabal V, Alfonzetti M, van der Merwe MM, Gallagher RV, Tetu SG. Seed banking impacts native Acacia ulicifolia seed microbiome composition and function. ENVIRONMENTAL MICROBIOME 2025; 20:4. [PMID: 39800756 PMCID: PMC11727264 DOI: 10.1186/s40793-024-00657-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Seed banks are a vital resource for preserving plant species diversity globally. However, seedling establishment and survival rates from banked seeds can be poor. Despite a growing appreciation for the role of seed-associated microbiota in supporting seed quality and plant health, our understanding of the effects of conventional seed banking processes on seed microbiomes remains limited. In this study we investigated the composition and functional potential of seed-associated bacterial epiphytes associated with stored and freshly collected seeds of a native plant, Acacia ulicifolia, using both 16S rRNA gene sequencing and culture-based approaches. RESULTS Seeds obtained from seed banking facilities were found to host significantly less diverse bacterial populations, with substantial reductions in both low-abundance taxa and in community members commonly identified in freshly collected A. ulicifolia seeds. Bacteria with key plant growth promoting traits including IAA production, ACC deaminase activity, phosphate solubilisation, siderophore activity, and nitrogen fixation were identified in seed epiphytic communities, but these beneficial traits were less prevalent in stored seed compared to fresh seeds. CONCLUSION Overall, these results suggest that epiphytic seed microbiomes may undergo significant changes during the storage process, selecting for bacteria tolerant to storage conditions, and potentially reducing the population of plant-growth promoting bacteria on seeds.
Collapse
Affiliation(s)
- Dylan Russell
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | - Vaheesan Rajabal
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
- ARC Centre of Excellence for Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Matthew Alfonzetti
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | - Marlien M van der Merwe
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, Royal Botanic Gardens and Domain Trust, Sydney, NSW, Australia
| | - Rachael V Gallagher
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, NSW, Australia
| | - Sasha G Tetu
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia.
- ARC Centre of Excellence for Synthetic Biology, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Davies J, Hawkins S, Winters A, Farrar K. Bacterial endophytic community composition varies by hemp cultivar in commercially sourced seed. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13259. [PMID: 38649235 PMCID: PMC11035101 DOI: 10.1111/1758-2229.13259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/12/2024] [Indexed: 04/25/2024]
Abstract
The seed-endophytic bacterial community is a potentially beneficial and heritable fraction of the plant microbiome. Its utilization as a sustainable crop improvement strategy could be especially valuable for species such as hemp, where production is being scaled up and new challenges will be faced in managing crop productivity and health. However, little is known about the makeup and variation of the hemp seed microbiome. This study profiled the endophytic bacterial communities harboured by 16 hemp cultivars sourced from commercial suppliers in Europe. A 16S rDNA amplicon sequencing approach identified 917 amplicon sequence variants across samples. Taxonomic classification of sequences revealed 4 phyla and 87 genera to be represented in the dataset. Several genera were widespread while some were specific to one or a few cultivars. Flavobacterium, Pseudomonas, and Pantoea were notable in their high overall abundance and prevalence, but community composition was variable and no one taxon was universally abundant, suggesting a high degree of flexibility in community assembly. Taxonomic composition and alpha diversity differed among cultivars, though further work is required to understand the relative influence of hemp genetic factors on community structure. The taxonomic profiles presented here can be used to inform further work investigating the functional characteristics and potential plant-growth-promoting traits of seed-borne bacteria in hemp.
Collapse
Affiliation(s)
- Jack Davies
- Institute of Biological, Environmental & Rural Sciences (IBERS)Aberystwyth UniversityAberystwythUK
| | - Sarah Hawkins
- Institute of Biological, Environmental & Rural Sciences (IBERS)Aberystwyth UniversityAberystwythUK
| | - Ana Winters
- Institute of Biological, Environmental & Rural Sciences (IBERS)Aberystwyth UniversityAberystwythUK
| | - Kerrie Farrar
- Institute of Biological, Environmental & Rural Sciences (IBERS)Aberystwyth UniversityAberystwythUK
| |
Collapse
|
4
|
Sun Z, Adeleke BS, Shi Y, Li C. The seed microbiomes of staple food crops. Microb Biotechnol 2023; 16:2236-2249. [PMID: 37815330 PMCID: PMC10686132 DOI: 10.1111/1751-7915.14352] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023] Open
Abstract
The scientific community increasingly recognized that seed microbiomes are important for plant growth and nutrition. The versatile roles and modulating properties that microbiomes hold in the context of seeds seem to be an inherited approach to avert adverse conditions. These discoveries attracted extensive interest, especially in staple food crops (SFCs) where grain was consumed as food. Along with the rapid expansion of population and industrialization that posed a severe challenge to the yield of SFCs, microbiologists and botanists began to explore and engineer seed microbiomes, for safer and more fruitful grain production. To utilize seed microbiomes, we present an overall review of the most updated scientific literature on three representative SFCs (wheat, rice and maize) using the 5W1H (Which, Where, What, Why, When and How) method that provides a comprehensive understanding of the issue. These include which factors determine the composition of seed microbiomes? Where do seed microbiomes come from? What are these seed microbes? Why do these microbes choose seeds as their destination and when do microbes settle down and become seed communists? In addition, how do seed microbiomes work and can be manipulated effectively? Therefore, answering the aforementioned questions regarding SFCs seed microbiomes remain fundamental in bridging endophytic research gaps and harnessing their ecological services.
Collapse
Affiliation(s)
- Zhongke Sun
- School of Biological EngineeringHenan University of TechnologyZhengzhouChina
- Food Laboratory of ZhongyuanLuoheChina
| | - Bartholomew Saanu Adeleke
- School of Biological EngineeringHenan University of TechnologyZhengzhouChina
- Department of Biological Sciences, School of ScienceOlusegun Agagu University of Science and TechnologyOkitipupaNigeria
| | - Yini Shi
- School of Biological EngineeringHenan University of TechnologyZhengzhouChina
| | - Chengwei Li
- School of Biological EngineeringHenan University of TechnologyZhengzhouChina
| |
Collapse
|
5
|
Acuña JJ, Hu J, Inostroza NG, Valenzuela T, Perez P, Epstein S, Sessitsch A, Zhang Q, Jorquera MA. Endophytic bacterial communities in ungerminated and germinated seeds of commercial vegetables. Sci Rep 2023; 13:19829. [PMID: 37963999 PMCID: PMC10645892 DOI: 10.1038/s41598-023-47099-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023] Open
Abstract
Chile is a prominent seed exporter globally, but the seed microbiome of vegetables (46% of seeds) and its role in the early stages of plant growth have remained largely unexplored. Here, we employed DNA metabarcoding analysis to investigate the composition and putative functions of endophytic bacterial communities in ungerminated and germinated seeds of the commercial vegetables Apiaceae (parsley and carrot), Asteraceae (lettuce), Brassicaceae (cabbage and broccoli), and Solanaceae (tomato). Bacterial quantification showed 104 to 108 copies of the 16S rRNA gene per gram of ungerminated and germinated seeds. Alpha diversity analysis (e.g., Chao1, Shannon, and Simpson indices) did not indicate significant differences (Kruskal-Wallis test) between ungerminated and germinated seeds, except for Solanaceae. However, beta diversity (PCoA) analysis showed distinctions (Adonis test) between ungerminated and germinated seeds, except Apiaceae. Pseudomonadota and Bacillota were identified as the dominant and specialist taxa in both ungerminated and germinated seed samples. Chemoheterotrophy and fermentation were predicted as the main microbial functional groups in the endophytic bacterial community. Notably, a considerable number of the 143 isolated endophytic strains displayed plant growth-promoting traits (10 to 64%) and biocontrol activity (74% to 82%) against plant pathogens (Xanthomonas and Pseudomonas). This study revealed the high variability in the abundance, diversity, composition, and functionality of endophytic bacteria between ungerminated and germinated seeds in globally commercialized vegetables. Furthermore, potential beneficial endophytic bacteria contained in their seed microbiomes that may contribute to the microbiome of the early stages, development, growth and progeny of vegetables were found.
Collapse
Affiliation(s)
- Jacquelinne J Acuña
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
- Millennium Institute Center for Genome Regulation (MI-CGR), Valenzuela Puelma 10207, 7800003, Santiago, La Reina, Chile
| | - Jingming Hu
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen, 361102, China
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Nitza G Inostroza
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
| | - Tamara Valenzuela
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco, Chile
| | - Pablo Perez
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco, Chile
| | - Slava Epstein
- College of Science, Northeastern University, 360 Huntington Ave., Boston, MA, 02115, USA
| | - Angela Sessitsch
- Health & Bioresources, AIT Austrian Institute of Technology, Konrad-Lorenz-Straße 24, 3430, Tulln, Austria
| | - Qian Zhang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen, 361102, China.
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China.
| | - Milko A Jorquera
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile.
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile.
| |
Collapse
|
6
|
Gerna D, Clara D, Antonielli L, Mitter B, Roach T. Seed Imbibition and Metabolism Contribute Differentially to Initial Assembly of the Soybean Holobiont. PHYTOBIOMES JOURNAL 2022; 8:21-33. [PMID: 38818306 PMCID: PMC7616048 DOI: 10.1094/pbiomes-03-23-0019-mf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Seed germination critically determines successful plant establishment and agricultural productivity. In the plant holobiont's life cycle, seeds are hubs for microbial communities' assembly, but what exactly shapes the holobiont during germination remains unknown. Here, 16S rRNA gene amplicon sequencing characterized the bacterial communities in embryonic compartments (cotyledons and axes) and on seed coats pre- and post-germination of four soybean (Glycine max) cultivars, in the presence or absence of exogenous abscisic acid (ABA), which prevented germination and associated metabolism of seeds that had imbibed. Embryonic compartments were metabolically profiled during germination to design minimal media mimicking the seed endosphere for bacterial growth assays. The distinction between embryonic and seed coat bacterial microbiomes of dry seeds weakened during germination, resulting in the plumule, radicle, cotyledon, and seed coat all hosting the same most abundant and structurally influential genera in germinated seeds of every cultivar. Treatment with ABA prevented the increase of bacterial microbiomes' richness, but not taxonomic homogenization across seed compartments. Growth assays on minimal media containing the most abundant metabolites that accumulated in germinated seeds revealed that seed reserve mobilization promoted enrichment of copiotrophic bacteria. Our data show that seed imbibition enabled distribution of seed-coat-derived epiphytes into embryos irrespective of germination, while germinative metabolism promoted proliferation of copiotrophic taxa, which predominated in germinated seeds.
Collapse
Affiliation(s)
- Davide Gerna
- Department of Botany and Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria
| | - David Clara
- Department of Botany and Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria
| | - Livio Antonielli
- Center for Health & Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, 3430 Tulln, Austria Accepted for publication 17 August 2023
| | - Birgit Mitter
- Center for Health & Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, 3430 Tulln, Austria Accepted for publication 17 August 2023
| | - Thomas Roach
- Department of Botany and Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|