1
|
Wang L, Shi P, Ping Z, Huang Q, Jiang L, Ma N, Wang Q, Xu J, Zou Y, Huang Z. The golden genome annotation of Ganoderma lingzhi reveals a more complex scenario of eukaryotic gene structure and transcription activity. BMC Biol 2024; 22:271. [PMID: 39587587 PMCID: PMC11590231 DOI: 10.1186/s12915-024-02073-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND It is generally accepted that nuclear genes in eukaryotes are located independently on chromosomes and expressed in a monocistronic manner. However, accumulating evidence suggests a more complex landscape of gene structure and transcription. Ganoderma lingzhi, a model medicinal fungus, currently lacks high-quality genome annotation, hindering genetic studies. RESULTS Here, we reported a golden annotation of G. lingzhi, featuring 14,147 high-confidence genes derived from extensive manual corrections. Novel characteristics of gene structure and transcription were identified accordingly. Notably, non-canonical splicing sites accounted for 1.99% of the whole genome, with the predominant types being GC-AG (1.85%), GT-AC (0.05%), and GT-GG (0.04%). 1165 pairs of genes were found to have overlapped transcribed regions, and 92.19% of which showed opposite directions of gene transcription. A total of 5,412,158 genetic variations were identified among 13 G. lingzhi strains, and the manually corrected gene sets resulted in enhanced functional annotation of these variations. More than 60% of G. lingzhi genes were alternatively spliced. In addition, we found that two or more protein-coding genes (PCGs) can be transcribed into a single RNA molecule, referred to as polycistronic genes. In total, 1272 polycistronic genes associated with 2815 PCGs were identified. CONCLUSIONS The widespread presence of polycistronic genes in G. lingzhi strongly complements the theory that polycistron is also present in eukaryotic genomes. The extraordinary gene structure and transcriptional activity uncovered through this golden annotation provide implications for the study of genes, genomes, and related studies in G. lingzhi and other eukaryotes.
Collapse
Affiliation(s)
- Lining Wang
- Guangdong Engineering Laboratory of Biomass Value-added Utilization, Guangdong Engineering Research & Development Center for Comprehensive Utilization of Plant Fiber, Guangzhou Key Laboratory for Comprehensive Utilization of Plant Fiber, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Peiqi Shi
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Zhaohua Ping
- Guangdong Engineering Laboratory of Biomass Value-added Utilization, Guangdong Engineering Research & Development Center for Comprehensive Utilization of Plant Fiber, Guangzhou Key Laboratory for Comprehensive Utilization of Plant Fiber, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Qinghua Huang
- Guangdong Engineering Laboratory of Biomass Value-added Utilization, Guangdong Engineering Research & Development Center for Comprehensive Utilization of Plant Fiber, Guangzhou Key Laboratory for Comprehensive Utilization of Plant Fiber, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Liqun Jiang
- Guangdong Engineering Laboratory of Biomass Value-added Utilization, Guangdong Engineering Research & Development Center for Comprehensive Utilization of Plant Fiber, Guangzhou Key Laboratory for Comprehensive Utilization of Plant Fiber, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Nianfang Ma
- Guangdong Engineering Laboratory of Biomass Value-added Utilization, Guangdong Engineering Research & Development Center for Comprehensive Utilization of Plant Fiber, Guangzhou Key Laboratory for Comprehensive Utilization of Plant Fiber, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Qingfu Wang
- Guangdong Engineering Laboratory of Biomass Value-added Utilization, Guangdong Engineering Research & Development Center for Comprehensive Utilization of Plant Fiber, Guangzhou Key Laboratory for Comprehensive Utilization of Plant Fiber, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, China.
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yajie Zou
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Zhihai Huang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
2
|
Wang L, Pan H, Ping Z, Ma N, Wang Q, Huang Z. Genome-wide identification and expression analysis revealed key transcription factors as potential regulators of high-temperature adaptation of Coriolopsis trogii. Arch Microbiol 2024; 206:357. [PMID: 39028428 DOI: 10.1007/s00203-024-04081-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/30/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
Transcription factors (TFs) play a crucial role in gene expression, and studying them can lay the foundation for future research on the functional characterization of TFs involved in various biological processes. In this study, we conducted a genome-wide identification and analysis of TFs in the thermotolerant basidiomycete fungus, Coriolopsis trogii. The TF repertoire of C. trogii consisted of 350 TFs, with C2H2 and Zn2C6 being the largest TF families. When the mycelia of C. trogii were cultured on PDA and transferred from 25 to 35 °C, 14 TFs were up-regulated and 14 TFs were down-regulated. By analyzing RNA-seq data from mycelia cultured at different temperatures and under different carbon sources, we identified 22 TFs that were differentially expressed in more than three comparisons. Co-expression analysis revealed that seven differentially expressed TFs, including four Zn2C6s, one Hap4_Hap_bind, one HMG_box, and one Zinc_knuckle, showed significant correlation with 729 targeted genes. Overall, this study provides a comprehensive characterization of the TF family and systematically screens TFs involved in the high-temperature adaptation of C. trogii, laying the groundwork for further research into the specific roles of TFs in the heat tolerance mechanisms of filamentous fungi.
Collapse
Affiliation(s)
- Lining Wang
- Guangdong Engineering Laboratory of Biomass Value-added Utilization, Guangdong Engineering Research and Development Center for Comprehensive Utilization of Plant Fiber, Guangzhou Key Laboratory for Comprehensive Utilization of Plant Fiber, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Hengyu Pan
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Zhaohua Ping
- Guangdong Engineering Laboratory of Biomass Value-added Utilization, Guangdong Engineering Research and Development Center for Comprehensive Utilization of Plant Fiber, Guangzhou Key Laboratory for Comprehensive Utilization of Plant Fiber, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Nianfang Ma
- Guangdong Engineering Laboratory of Biomass Value-added Utilization, Guangdong Engineering Research and Development Center for Comprehensive Utilization of Plant Fiber, Guangzhou Key Laboratory for Comprehensive Utilization of Plant Fiber, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Qingfu Wang
- Guangdong Engineering Laboratory of Biomass Value-added Utilization, Guangdong Engineering Research and Development Center for Comprehensive Utilization of Plant Fiber, Guangzhou Key Laboratory for Comprehensive Utilization of Plant Fiber, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, China.
| | - Zhihai Huang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
3
|
Kachrimanidou V, Papadaki A, Papapostolou H, Alexandri M, Gonou-Zagou Z, Kopsahelis N. Ganoderma lucidum Mycelia Mass and Bioactive Compounds Production through Grape Pomace and Cheese Whey Valorization. Molecules 2023; 28:6331. [PMID: 37687160 PMCID: PMC10489755 DOI: 10.3390/molecules28176331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Numerous compounds obtained from the medicinal mushroom Ganoderma lucidum have evidenced renowned bioactive characteristics. Controlled fermentation to generate fungal mycelia confers several advantages, specifically when the valorization of agro-industrial streams as fermentation feedstocks is included. Submerged fermentation of a newly isolated Greek strain of G. lucidum was performed using conventional synthetic media and, also, grape pomace extract (GPE) and cheese whey permeate (CWP) under static and shaking conditions. Under shaking conditions, maximum biomass with GPE and supplementation with organic nitrogen reached 17.8 g/L. The addition of an elicitor in CWP resulted in a significant improvement in biomass production that exceeded synthetic media. Overall, agitation demonstrated a positive impact on biomass productivity and, therefore, on process optimization. Crude intracellular and extracellular polysaccharides were extracted and evaluated regarding antioxidant activity and polysaccharide and protein content. FTIR analysis confirmed the preliminary chemical characterization of the crude extracts. This study introduces the design of a bioprocessing scenario to utilize food industry by-products as onset feedstocks for fungal bioconversions to obtain potential bioactive molecules within the concept of bioeconomy.
Collapse
Affiliation(s)
- Vasiliki Kachrimanidou
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece; (V.K.); (A.P.)
| | - Aikaterini Papadaki
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece; (V.K.); (A.P.)
| | - Harris Papapostolou
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece; (V.K.); (A.P.)
| | - Maria Alexandri
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece; (V.K.); (A.P.)
| | - Zacharoula Gonou-Zagou
- Department of Ecology and Systematics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Nikolaos Kopsahelis
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece; (V.K.); (A.P.)
| |
Collapse
|
4
|
Demkiv O, Gayda G, Stasyuk N, Brahinetz O, Gonchar M, Nisnevitch M. Nanomaterials as Redox Mediators in Laccase-Based Amperometric Biosensors for Catechol Assay. BIOSENSORS 2022; 12:bios12090741. [PMID: 36140126 PMCID: PMC9496325 DOI: 10.3390/bios12090741] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 12/02/2022]
Abstract
Laccase is a copper-containing enzyme that does not require hydrogen peroxide as a co-substrate or additional cofactors for an enzymatic reaction. Nanomaterials of various chemical structures are usually applied to the construction of enzyme-based biosensors. Metals, metal oxides, semiconductors, and composite NPs perform various functions in electrochemical transformation schemes as a platform for the enzyme immobilization, a mediator of an electron transfer, and a signal amplifier. We describe here the development of amperometric biosensors (ABSs) based on laccase and redox-active micro/nanoparticles (hereafter—NPs), which were immobilized on a graphite electrode (GE). For this purpose, we isolated a highly purified enzyme from the fungus Trametes zonatus, and then synthesized bi- and trimetallic NPs of noble and transition metals, as well as hexacyanoferrates (HCF) of noble metals; these were layered onto the surfaces of GEs. The electroactivity of many of the NPs immobilized on the GEs was characterized by cyclic voltammetry (CV) experiments. The most effective mediators of electron transfer were selected as the platform for the development of laccase-based ABSs. As a result, a number of catechol-sensitive ABSs were constructed and characterized. The laccase/CuCo/GE was demonstrated to possess the highest sensitivity to catechol (4523 A·M−1·m−2) among the tested ABSs. The proposed ABSs may be promising for the analysis of phenolic derivatives in real samples of drinking water, wastewater, and food products.
Collapse
Affiliation(s)
- Olha Demkiv
- Institute of Cell Biology National Academy of Sciences of Ukraine, 14/16, Dragomanova Str., 79005 Lviv, Ukraine
| | - Galina Gayda
- Institute of Cell Biology National Academy of Sciences of Ukraine, 14/16, Dragomanova Str., 79005 Lviv, Ukraine
- Correspondence: (G.G.); (M.N.); Tel.: +38-(032)-2612144 (G.G.); +972-39143042 (M.N.)
| | - Nataliya Stasyuk
- Institute of Cell Biology National Academy of Sciences of Ukraine, 14/16, Dragomanova Str., 79005 Lviv, Ukraine
| | - Olena Brahinetz
- State Institution Institute of Blood Pathology and Transfusion Medicine National Academy of Medical Sciences of Ukraine, 45, General Chuprinka Str., 79044 Lviv, Ukraine
| | - Mykhailo Gonchar
- Institute of Cell Biology National Academy of Sciences of Ukraine, 14/16, Dragomanova Str., 79005 Lviv, Ukraine
| | - Marina Nisnevitch
- Department of Chemical Engineering, Ariel University, Kyriat-ha-Mada, Ariel 4070000, Israel
- Correspondence: (G.G.); (M.N.); Tel.: +38-(032)-2612144 (G.G.); +972-39143042 (M.N.)
| |
Collapse
|