1
|
Hou W, Xing Y, Xue H, Huang Y, Huang Y, Men W, Yang Y, Kang T, Dou D, Zheng H, Xu L. Exploring the diversity and potential functional characteristics of microbiota associated with different compartments of Schisandra chinensis. Front Microbiol 2024; 15:1419943. [PMID: 38939187 PMCID: PMC11208631 DOI: 10.3389/fmicb.2024.1419943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024] Open
Abstract
Introduction Symbiotic microbial have a significant impact on the growth and metabolism of medicinal plants. Schisandra chinensis is a very functionally rich medicinal herb; however, its microbial composition and diversity have been poorly studied. Methods In the present study, the core microbiomes associated with the rhizospheric soil, roots, stems, leaves, and fruits of S. chinensis from six geographic locations were analyzed by a macro-genomics approach. Results Alpha and beta diversity analyses showed that the diversity of microbial composition of S. chinensis fruits did not differ significantly among the geographic locations as compared to that in different plant compartments. Principal coordinate analysis showed that the microbial communities of S. chinensis fruits from the different ecological locations were both similar and independent. In all S. chinensis samples, Proteobacteria was the most dominant bacterial phylum, and Ascomycota and Basidiomycota were the most dominant fungal phyla. Nitrospira, Bradyrhizobium, Sphingomonas, and Pseudomonas were the marker bacterial populations in rhizospheric soils, roots, stems and leaves, and fruits, respectively, and Penicillium, Golubevia, and Cladosporium were the marker fungal populations in the rhizospheric soil and roots, stems and leaves, and fruits, respectively. Functional analyses showed a high abundance of the microbiota mainly in biosynthesis. Discussion The present study determined the fungal structure of the symbiotic microbiome of S. chinensis, which is crucial for improving the yield and quality of S. chinensis.
Collapse
Affiliation(s)
- Wenjuan Hou
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Yanping Xing
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Hefei Xue
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Yanchang Huang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Yutong Huang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Wenxiao Men
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Yanyun Yang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
- State Key Laboratory of Dao-di Herbs, Beijng, China
| | - Tingguo Kang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Deqiang Dou
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Han Zheng
- State Key Laboratory of Dao-di Herbs, Beijng, China
| | - Liang Xu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
- State Key Laboratory of Dao-di Herbs, Beijng, China
| |
Collapse
|
2
|
Xie Q, Xu H, Wen R, Wang L, Yang Y, Zhang H, Su B. Integrated management of fruit trees and Bletilla striata: implications for soil nutrient profiles and microbial community structures. Front Microbiol 2024; 15:1307677. [PMID: 38511009 PMCID: PMC10951077 DOI: 10.3389/fmicb.2024.1307677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/14/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction Forest medicinal compound systems in agroforestry ecosystems represent a multi-layered cultivation approach that utilizes forest resources efficiently. However, research on how these systems affect soil nutrients and microbial communities is limited. Methods This study compared the soil chemical properties and microbial communities of Bletilla striata (C) grown alone versus in agroforestry systems with apple (PB), pear (LB), and peach trees (TB), aiming to understand the impact of these systems on soil health and microbial diversity. Results Soil in the GAB systems showed increased levels of essential nutrients but lower pH and ammonium nitrogen levels compared to the control. Significant improvements in organic matter, total phosphorus, and total potassium were observed in TB, PB, and LB systems, respectively. The bacterial diversity increased in GAB systems, with significant changes in microbial phyla indicative of a healthier soil ecosystem. The correlation between soil properties and bacterial communities was stronger than with fungal communities. Discussion Integrating B. striata with fruit trees enhances soil nutrients and microbial diversity but may lead to soil acidification. Adjustments such as using controlled-release fertilizers and soil amendments like lime could mitigate negative impacts, improving soil health in GAB systems.
Collapse
Affiliation(s)
- Qiufeng Xie
- College of Pharmaceutical Science, Dali University, Dali, China
- Western Yunnan Traditional Chinese Medicine and Ethnic Drug Engineering Center, College of Pharmacy, Dali University, Dali, China
| | - Huimei Xu
- College of Pharmaceutical Science, Dali University, Dali, China
- Western Yunnan Traditional Chinese Medicine and Ethnic Drug Engineering Center, College of Pharmacy, Dali University, Dali, China
| | - Rouyuan Wen
- College of Pharmaceutical Science, Dali University, Dali, China
- Western Yunnan Traditional Chinese Medicine and Ethnic Drug Engineering Center, College of Pharmacy, Dali University, Dali, China
| | - Le Wang
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Yan Yang
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Haizhu Zhang
- College of Pharmaceutical Science, Dali University, Dali, China
- Western Yunnan Traditional Chinese Medicine and Ethnic Drug Engineering Center, College of Pharmacy, Dali University, Dali, China
| | - BaoShun Su
- Dali Lin Yun Biotechnology Development Co., Ltd., Dali, China
| |
Collapse
|
3
|
Han Y, Dong Q, Zhang K, Sha D, Jiang C, Yang X, Liu X, Zhang H, Wang X, Guo F, Zhang Z, Wan S, Zhao X, Yu H. Maize-peanut rotational strip intercropping improves peanut growth and soil properties by optimizing microbial community diversity. PeerJ 2022; 10:e13777. [PMID: 35919403 PMCID: PMC9339216 DOI: 10.7717/peerj.13777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/01/2022] [Indexed: 01/17/2023] Open
Abstract
Rotational strip intercropping (RSI) of cereals and legumes has been developed and widely carried out to alleviate continuous cropping obstacles, to control erosion and to improve field use efficiency. In this study, a four-year fixed-field experiment was carried out in northeast China with three treatments: continuous cropping of maize, continuous cropping of peanuts and rotational strip intercropping of maize and peanut. The results show that crop rotation improved the main-stem height, branch number, lateral branch length, and yield and quality of peanuts; the yield was the highest in 2018, when it was increased by 39.5%. RSI improved the contents of total N, available N, total P, available P, total K and available K; the content of available N was the highest in 2018, with an increase of 70%. Rhizosphere soil urease and catalase activities were significantly increased and were the highest in 2017, reaching 183.13% and 91.21%, respectively. According to a high-throughput sequencing analysis, the rhizosphere soil bacterial richness and specific OTUs decreased in peanut rhizosphere soil, while the fungal increased. There were differences in the bacterial and fungal community structures; specifically, the abundance of Acidobacteria and Planctomycetes increased among bacteria and the abundance of beneficial microorganisms such as Ascomycota increased among fungi. In conclusion, rotational strip intercropping of maize and peanut increased the yield and quality of peanuts and conducive to alleviating the obstacles facing the continuous cropping of peanuts. Among then, soil physicochemical properties, enzyme activity and microbial diversity were significantly affected the yield of peanut.
Collapse
Affiliation(s)
- Yi Han
- College of Agronomy, Shenyang Agricultural University, Shenyang City, Liaoning Province, China
| | - Qiqi Dong
- College of Agronomy, Shenyang Agricultural University, Shenyang City, Liaoning Province, China
| | - Kezhao Zhang
- College of Agronomy, Shenyang Agricultural University, Shenyang City, Liaoning Province, China
| | - Dejian Sha
- College of Agronomy, Shenyang Agricultural University, Shenyang City, Liaoning Province, China
| | - Chunji Jiang
- College of Agronomy, Shenyang Agricultural University, Shenyang City, Liaoning Province, China
| | - Xu Yang
- College of Agronomy, Shenyang Agricultural University, Shenyang City, Liaoning Province, China
| | - Xibo Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang City, Liaoning Province, China
| | - He Zhang
- College of Agronomy, Shenyang Agricultural University, Shenyang City, Liaoning Province, China
| | - Xiaoguang Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang City, Liaoning Province, China
| | - Feng Guo
- Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Zheng Zhang
- Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Shubo Wan
- Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Xinhua Zhao
- College of Agronomy, Shenyang Agricultural University, Shenyang City, Liaoning Province, China
| | - Haiqiu Yu
- College of Agronomy, Shenyang Agricultural University, Shenyang City, Liaoning Province, China
| |
Collapse
|