1
|
Radujković D, Verbruggen E, Clavel J, Pauchard A, Fuentes-Lillo E, Barros A, Aschero V, Haider S, Ratier Backes A, Pergl J, Vítková M, Lučanová A, Nuñez MA, Lenoir J, Nijs I, Lembrechts JJ. Road Disturbance Shifts Root Fungal Symbiont Types and Reduces the Connectivity of Plant-Fungal Co-Occurrence Networks in Mountains. Mol Ecol 2025:e17771. [PMID: 40277330 DOI: 10.1111/mec.17771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/10/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025]
Abstract
Roads are currently one of the most disruptive anthropogenic disturbances to mountain ecosystems worldwide. These disturbances can have a profound effect on roadside soil properties and vegetation, typically favouring fast-growing and ruderal species. However, their effect on plant-associated fungal communities and plant-fungal interactions remains largely unknown. In this study, we examined the changes in root-associated fungal communities as well as plant-fungal and fungal-fungal co-occurrence networks along mountain roads from four biogeographical regions. We found that roadsides consistently altered plant and fungal community composition, generally favouring arbuscular mycorrhizal fungi and putative plant pathogens at the expense of ectomycorrhizal fungi. Moreover, roadsides consistently reduced the complexity of plant-fungal and fungal-fungal co-occurrence networks (with 66%-95% and 40%-94% reduction in total edge density, respectively), even though the richness of fungal communities was not reduced and many of the naturally occurring highly connected taxa were still present. Our findings suggest that altered and transient conditions in the roadsides may favour more generalist symbionts like AMF and pathogens with low fidelity for particular hosts as opposed to surrounding natural vegetation which is dominated by symbionts with higher specificity for the host (like ectomycorrhizal fungi). We conclude that road disturbance may have a consistent negative imprint on connectivity between plants and fungi; a consequence that deserves attention as it could render mountain roadside systems unstable and vulnerable to further pressures such as climate change and invasive species.
Collapse
Affiliation(s)
- Dajana Radujković
- Plants and Ecosystems Group (PLECO), Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Erik Verbruggen
- Plants and Ecosystems Group (PLECO), Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Jan Clavel
- Plants and Ecosystems Group (PLECO), Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Aníbal Pauchard
- Instituto de Ecología y Biodiversidad, Santiago, Chile
- Laboratorio de Invasiones Biológicas, Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile
| | - Eduardo Fuentes-Lillo
- Instituto de Ecología y Biodiversidad, Santiago, Chile
- Laboratorio de Invasiones Biológicas, Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile
| | - Agustina Barros
- Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, CONICET, Mendoza, Argentina
| | - Valeria Aschero
- Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, CONICET, Mendoza, Argentina
| | - Sylvia Haider
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
- Institute of Ecology, Faculty of Sustainability, Leuphana University of Lüneburg, Lüneburg, Germany
| | - Amanda Ratier Backes
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| | - Jan Pergl
- Department of Invasion Ecology, Institute of Botany of the Czech Academy of Sciences, Pruhonice, Czech Republic
| | - Michaela Vítková
- Department of Invasion Ecology, Institute of Botany of the Czech Academy of Sciences, Pruhonice, Czech Republic
| | - Anna Lučanová
- Department of Invasion Ecology, Institute of Botany of the Czech Academy of Sciences, Pruhonice, Czech Republic
| | - Martin A Nuñez
- Department of Biology and Biochemistry, Division of Ecology & Evolution, University of Houston, Houston, Texas, USA
| | - Jonathan Lenoir
- UMR CNRS 7058, Ecologie et Dynamique des Systèmes Anthropisés, Université de Picardie Jules Verne, Amiens, France
| | - Ivan Nijs
- Plants and Ecosystems Group (PLECO), Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Jonas J Lembrechts
- Plants and Ecosystems Group (PLECO), Department of Biology, University of Antwerp, Wilrijk, Belgium
- Ecology & Biodiversity, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
2
|
Tidimalo C, Maximiliano O, Karen J, Lebre PH, Bernard O, Michelle G, Oagile D, Cowan DA. Microbial diversity in the arid and semi-arid soils of Botswana. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70044. [PMID: 39535358 PMCID: PMC11558117 DOI: 10.1111/1758-2229.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
To date, little research has been conducted on the landscape-scale distribution of soil microbial communities and the factors driving their community structures in the drylands of Africa. We investigated the influence of landscape-scale variables on microbial community structure and diversity across different ecological zones in Botswana. We used amplicon sequencing of bacterial 16S rRNA gene and fungal internal transcribed spacers (ITS) and a suite of environmental parameters to determine drivers of microbial community structure. Bacterial communities were dominated by Actinomycetota (21.1%), Pseudomonadota (15.9%), and Acidobacteriota (10.9%). The dominant fungal communities were Ascomycota (57.3%) and Basidiomycota (7.5%). Soil pH, mean annual precipitation, total organic carbon, and soil ions (calcium and magnesium) were the major predictors of microbial community diversity and structure. The co-occurrence patterns of bacterial and fungal communities were influenced by soil pH, with network-specific fungi-bacteria interactions observed. Potential keystone taxa were identified for communities in the different networks. Most of these interactions were between microbial families potentially involved in carbon cycling, suggesting functional redundancy in these soils. Our findings highlight the significance of soil pH in determining the landscape-scale structure of microbial communities in Botswana's dryland soils.
Collapse
Affiliation(s)
- Coetzee Tidimalo
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
| | - Ortiz Maximiliano
- Clemson University Genomics & Bioinformatics FacilityClemson UniversitySouth CarolinaUSA
| | - Jordaan Karen
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
| | - Pedro H. Lebre
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
| | - Olivier Bernard
- Department of Plant and Soil SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Greve Michelle
- Department of Plant and Soil SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Dikinya Oagile
- Department of Environmental ScienceUniversity of BotswanaGaboroneBotswana
| | - Don A. Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
3
|
Wang H, Tian D, Cao J, Ren S, Zhu Y, Wang H, Wu L, Chen L. Eucalyptus and Native Broadleaf Mixed Cultures Boost Soil Multifunctionality by Regulating Soil Fertility and Fungal Community Dynamics. J Fungi (Basel) 2024; 10:709. [PMID: 39452661 PMCID: PMC11508252 DOI: 10.3390/jof10100709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
The growing recognition of mixed Eucalyptus and native broadleaf plantations as a means of offsetting the detrimental impacts of pure Eucalyptus plantations on soil fertility and the wider ecological environment is accompanied by a clear and undeniable positive impact on forest ecosystem functions. Nevertheless, the question of how mixed Eucalyptus and native broadleaf plantations enhance soil multifunctionality (SMF) and the mechanisms driving soil fungal communities remains unanswered. In this study, three types of mixed Eucalyptus and native broadleaf plantations were selected and compared with neighboring evergreen broadleaf forests and pure Eucalyptus plantations. SMF was quantified using 20 parameters related to soil nutrient cycling. Partial least squares path modeling (PLS-PM) was employed to identify the key drivers regulating SMF. The findings of this study indicate that mixed Eucalyptus and native broadleaf plantations significantly enhance SMF. Mixed Eucalyptus and native broadleaf plantations led to improvements in soil properties (7.60-52.22%), enzyme activities (10.13-275.51%), and fungal community diversity (1.54-29.5%) to varying degrees compared with pure Eucalyptus plantations. Additionally, the mixed plantations exhibit enhanced connectivity and complexity in fungal co-occurrence networks. The PLS-PM results reveal that soil properties, fungal diversity, and co-occurrence network complexity directly and positively drive changes in SMF. Furthermore, soil properties exert an indirect influence on SMF through their impact on fungal diversity, species composition, and network complexity. The findings of this study highlight the significant role of mixed Eucalyptus and native broadleaf plantations in enhancing SMF through improved soil properties, fungal diversity, and co-occurrence network complexity. This indicates that incorporating native broadleaf species into Eucalyptus plantations can effectively mitigate the negative impacts of monoculture plantations on soil health and ecosystem functionality. In conclusion, our study contributes to the understanding of how mixed plantations influence SMF, offering new insights into the optimization of forest management and ecological restoration strategies in artificial forest ecosystems.
Collapse
Affiliation(s)
- Huaxiang Wang
- Key Laboratory of Soil and Water Conservation and Desertification Combating of Hunan Province, Central South University of Forestry and Technology, Changsha 410004, China; (H.W.); (D.T.); (L.W.)
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Dian Tian
- Key Laboratory of Soil and Water Conservation and Desertification Combating of Hunan Province, Central South University of Forestry and Technology, Changsha 410004, China; (H.W.); (D.T.); (L.W.)
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jizhao Cao
- Guangxi Zhuang Autonomous Region Forestry Research Institute, Nanning 530002, China; (J.C.); (S.R.); (H.W.)
| | - Shiqi Ren
- Guangxi Zhuang Autonomous Region Forestry Research Institute, Nanning 530002, China; (J.C.); (S.R.); (H.W.)
| | - Yuanli Zhu
- Qipo State-Owned Forest Farm of Guangxi Zhuang Autonomous Region, Nanning 530225, China;
| | - Huili Wang
- Guangxi Zhuang Autonomous Region Forestry Research Institute, Nanning 530002, China; (J.C.); (S.R.); (H.W.)
| | - Lichao Wu
- Key Laboratory of Soil and Water Conservation and Desertification Combating of Hunan Province, Central South University of Forestry and Technology, Changsha 410004, China; (H.W.); (D.T.); (L.W.)
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lijun Chen
- Key Laboratory of Soil and Water Conservation and Desertification Combating of Hunan Province, Central South University of Forestry and Technology, Changsha 410004, China; (H.W.); (D.T.); (L.W.)
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
4
|
Boie W, Schemmel M, Ye W, Hasler M, Goll M, Verreet JA, Cai D. An assessment of the species diversity and disease potential of Pythium communities in Europe. Nat Commun 2024; 15:8369. [PMID: 39333145 PMCID: PMC11437173 DOI: 10.1038/s41467-024-52761-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
Pythium sensu lato (s.l.) is a genus of parasitic oomycetes that poses a serious threat to agricultural production worldwide, but their severity is often neglected because little knowledge about them is available. Using an internal transcribed spacer (ITS) amplicon-based-metagenomics approach, we investigate the occurrence, abundance, and diversity of Pythium spp. s.l. in 127 corn fields of 11 European countries from the years 2019 to 2021. We also identify 73 species, with up to 20 species in a single soil sample, and the prevalent species, which show high species diversity, varying disease potential, and are widespread in most countries. Further, we show species-species co-occurrence patterns considering all detected species and link species abundance to soil parameter using the LUCAS topsoil dataset. Infection experiments with recovered isolates show that Pythium s.l. differ in disease potential, and that effective interference with plant hormone networks suppressing JA (jasmonate)-mediated defenses is an essential component of the virulence mechanism of Pythium s.l. species. This study provides a valuable dataset that enables deep insights into the structure and species diversity of Pythium s.l. communities in European corn fields and knowledge for better understanding plant-Pythium interactions, facilitating the development of an effective strategy to cope with this pathogen.
Collapse
Affiliation(s)
- Wilken Boie
- Molecular Phytopathology and Biotechnology, Institute for Phytopathology, Christian-Albrechts-University of Kiel, Hermann-Rodewald Str. 9, Kiel, Germany
| | - Markus Schemmel
- Molecular Phytopathology and Biotechnology, Institute for Phytopathology, Christian-Albrechts-University of Kiel, Hermann-Rodewald Str. 9, Kiel, Germany
| | - Wanzhi Ye
- Molecular Phytopathology and Biotechnology, Institute for Phytopathology, Christian-Albrechts-University of Kiel, Hermann-Rodewald Str. 9, Kiel, Germany
| | - Mario Hasler
- Lehrfach Variationsstatistik, Christian-Albrechts-University of Kiel, Hermann-Rodewald Str. 9, Kiel, Germany
| | - Melanie Goll
- Syngenta Agro GmbH, Lindleystraße 8 D, Frankfurt am Main, Germany
| | - Joseph-Alexander Verreet
- Phytopathology and Crop Protection, Institute for Phytopathology, Christian-Albrechts-University of Kiel, Hermann-Rodewald Str. 9, Kiel, Germany
| | - Daguang Cai
- Molecular Phytopathology and Biotechnology, Institute for Phytopathology, Christian-Albrechts-University of Kiel, Hermann-Rodewald Str. 9, Kiel, Germany.
| |
Collapse
|
5
|
Munyai R, Ogola HJO, Wambui Kimani V, Modise DM. Unlocking water potential in drylands: Quicklime and fly ash enhance soil microbiome structure, ecological networks and function in acid mine drainage water-irrigated agriculture. Heliyon 2024; 10:e27985. [PMID: 38533070 PMCID: PMC10963335 DOI: 10.1016/j.heliyon.2024.e27985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
In water-stressed regions, treated acid mine drainage (AMD) water for irrigated agriculture is a potential solution to address freshwater scarcity. However, a significant knowledge gap exists on the short and long-term effects of treated AMD water on soil health. This study used high-throughput Illumina sequencing and predictive metagenomic profiling to investigate the impact of untreated AMD (AMD), quicklime- (A1Q and A2Q) and quicklime and fly ash-treated AMD water (AFQ) irrigation on soil bacterial diversity, co-occurrence networks and function. Results showed that untreated AMD water significantly increased soil acidity, electrical conductivity (EC), sulfate (SO42-), and heavy metals (HM), including reduced microbial diversity, disrupted interaction networks, and functional capacity. pH, EC, Cu, and Pb were identified as key environmental factors shaping soil microbial diversity and structure. Predominantly, Pseudomonas, Ralstonia picketti, Methylotenera KB913035, Brevundimonas vesicularis, and Methylobacteriumoryzae, known for their adaptability to acidic conditions and metal resistance, were abundant in AMD soils. However, soils irrigated with treated AMD water exhibited significantly reduced acidity (pH > 6.5), HM and SO42- levels, with an enrichment of a balanced bacterial taxa associated with diverse functions related to soil health and agricultural productivity. These taxa included Sphingomonas, Pseudoxanthomonas, Achromobacter, Microbacterium, Rhodobacter, Clostridium, Massillia, Rhizobium, Paenibacillus, and Hyphomicrobium. Moreover, treated AMD water contributed to higher connectivity and balance within soil bacterial co-occurrence networks compared to untreated AMD water. These results show that quicklime/fly ash treatments can help lessen impacts of AMD water on soil microbiome and health, suggesting its potential for irrigated agriculture in water-scarce regions.
Collapse
Affiliation(s)
- Rabelani Munyai
- Department of Agriculture and Animal Health, University of South Africa, Florida Science Campus, Roodepoort, 1709, South Africa
- School of Food and Agricultural Sciences, Jaramogi Oginga Odinga University of Science and Technology, P.O Box 210-40601 Bondo, Kenya
| | - Henry Joseph Oduor Ogola
- School of Food and Agricultural Sciences, Jaramogi Oginga Odinga University of Science and Technology, P.O Box 210-40601 Bondo, Kenya
- Department of Environmental Sciences, University of South Africa, Florida Science Campus, Roodepoort, 1709, South Africa
| | - Virginia Wambui Kimani
- Industrial Microbiology and Biotechnology Research Centre (IMB-RC), Kenya Industrial Research and Development Institute (KIRDI), Popo Road off Mombasa Road, South C, Nairobi, Kenya
| | - David Mxolisi Modise
- Faculty of Natural and Agricultural Sciences, North West University, Private Bag X6001, Potchefstroom Campus, Potchefstroom, 2520, South Africa
| |
Collapse
|
6
|
Zhou X, Hu Y, Li H, Sheng J, Cheng J, Zhao T, Zhang Y. Phosphorus addition increases stability and complexity of co-occurrence network of soil microbes in an artificial Leymus chinensis grassland. Front Microbiol 2024; 15:1289022. [PMID: 38601937 PMCID: PMC11004269 DOI: 10.3389/fmicb.2024.1289022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction Understanding the response of cross-domain co-occurrence networks of soil microorganisms to phosphorus stability and the resulting impacts is critical in ecosystems, but the underlying mechanism is unclear in artificial grassland ecosystems. Methods In this study, the effects of four phosphorus concentrations, P0 (0 kg P ha-1), P1 (15.3 kg P ha-1), P2 (30.6 kg P ha-1), and P3 (45.9 kg P ha-1), on the cross-domain co-occurrence network of bacteria and fungi were investigated in an artificial Leymus chinensis grassland in an arid region. Results and discussion The results of the present study showed that phosphorus addition significantly altered the stem number, biomass and plant height of the Leymus chinensis but had no significant effect on the soil bacterial or fungal alpha (ACE) diversity or beta diversity. The phosphorus treatments all increased the cross-domain co-occurrence network edge, node, proportion of positively correlated edges, edge density, average degree, proximity to centrality, and robustness and increased the complexity and stability of the bacterial-fungal cross-domain co-occurrence network after 3 years of continuous phosphorus addition. Among them, fungi (Ascomycota, Basidiomycota, Mortierellomycota and Glomeromycota) play important roles as keystone species in the co-occurrence network, and they are significantly associated with soil AN, AK and EC. Finally, the growth of Leymus chinensis was mainly due to the influence of the soil phosphorus content and AN. This study revealed the factors affecting the growth of Leymus chinense in artificial grasslands in arid areas and provided a theoretical basis for the construction of artificial grasslands.
Collapse
Affiliation(s)
- Xiaoguo Zhou
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Urumqi, China
| | - Yutong Hu
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Urumqi, China
| | - Huijun Li
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, China
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiandong Sheng
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Urumqi, China
| | - Junhui Cheng
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Urumqi, China
| | - Tingting Zhao
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Urumqi, China
| | - Yuanmei Zhang
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
7
|
Chen Y, Huang X, Lang X, Tang R, Zhang R, Li S, Su J. Effects of plant diversity, soil microbial diversity, and network complexity on ecosystem multifunctionality in a tropical rainforest. FRONTIERS IN PLANT SCIENCE 2023; 14:1238056. [PMID: 37794931 PMCID: PMC10545900 DOI: 10.3389/fpls.2023.1238056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/25/2023] [Indexed: 10/06/2023]
Abstract
Introduction Plant diversity and soil microbial diversity are important driving factors in sustaining ecosystem multifunctionality (EMF) in terrestrial ecosystems. However, little is known about the relative importance of plant diversity, soil microbial diversity, and soil microbial network complexity to EMF in tropical rainforests. Methods This study took the tropical rainforest in Xishuangbanna, Yunnan Province, China as the research object, and quantified various ecosystem functions such as soil organic carbon stock, soil nutrient cycling, biomass production, and water regulation in the tropical rainforest to explore the relationship and effect of plant diversity, soil microbial diversity, soil microbial network complexity and EMF. Results Our results exhibited that EMF decreased with increasing liana species richness, soil fungal diversity, and soil fungal network complexity, which followed a trend of initially increasing and then decreasing with soil bacterial diversity while increasing with soil bacterial network complexity. Soil microbial diversity and plant diversity primarily affected soil nutrient cycling. Additionally, liana species richness had a significant negative effect on soil organic carbon stocks. The random forest model suggested that liana species richness, soil bacterial network complexity, and soil fungal network complexity indicated more relative importance in sustaining EMF. The structural equation model revealed that soil bacterial network complexity and tree species richness displayed the significantly positive effects on EMF, while liana species richness significantly affected EMF via negative pathway. We also observed that soil microbial diversity indirectly affected EMF through soil microbial network complexity. Soil bulk density had a significant and negative effect on liana species richness, thus indirectly influencing EMF. Simultaneously, we further found that liana species richness was the main indicator of sustaining EMF in a tropical rainforest, while soil bacterial diversity was the primary driving factor. Discussion Our findings provide new insight into the relationship between biodiversity and EMF in a tropical rainforest ecosystem and the relative contribution of plant and soil microibal diversity to ecosystem function with increasing global climate change.
Collapse
Affiliation(s)
- Yanxuan Chen
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
| | - Xiaobo Huang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
- Pu’er Forest Ecosystem Research Station, National Forestry and Grassland Administration of China, Kunming, China
- Pu’er Forest Ecosystem Observation and Research Station of Yunnan Province, Science and Technology Department of Yunnan Province, Kunming, China
| | - Xuedong Lang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
- Pu’er Forest Ecosystem Research Station, National Forestry and Grassland Administration of China, Kunming, China
- Pu’er Forest Ecosystem Observation and Research Station of Yunnan Province, Science and Technology Department of Yunnan Province, Kunming, China
| | - Rong Tang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
- Pu’er Forest Ecosystem Research Station, National Forestry and Grassland Administration of China, Kunming, China
- Pu’er Forest Ecosystem Observation and Research Station of Yunnan Province, Science and Technology Department of Yunnan Province, Kunming, China
| | - Rui Zhang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
- Pu’er Forest Ecosystem Research Station, National Forestry and Grassland Administration of China, Kunming, China
- Pu’er Forest Ecosystem Observation and Research Station of Yunnan Province, Science and Technology Department of Yunnan Province, Kunming, China
| | - Shuaifeng Li
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
- Pu’er Forest Ecosystem Research Station, National Forestry and Grassland Administration of China, Kunming, China
- Pu’er Forest Ecosystem Observation and Research Station of Yunnan Province, Science and Technology Department of Yunnan Province, Kunming, China
| | - Jianrong Su
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
- Pu’er Forest Ecosystem Research Station, National Forestry and Grassland Administration of China, Kunming, China
- Pu’er Forest Ecosystem Observation and Research Station of Yunnan Province, Science and Technology Department of Yunnan Province, Kunming, China
| |
Collapse
|
8
|
Debnath S, Chakraborty S, Langthasa M, Choure K, Agnihotri V, Srivastava A, Rai PK, Tilwari A, Maheshwari DK, Pandey P. Non-rhizobial nodule endophytes improve nodulation, change root exudation pattern and promote the growth of lentil, for prospective application in fallow soil. FRONTIERS IN PLANT SCIENCE 2023; 14:1152875. [PMID: 37113600 PMCID: PMC10126288 DOI: 10.3389/fpls.2023.1152875] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Non-rhizobial endophytes (NREs) are active colonizers inhabiting the root nodules. Though their active role in the lentil agroecosystem is not well defined, here we observed that these NREs might promote the growth of lentils, modulate rhizospheric community structure and could be used as promising organisms for optimal use of rice fallow soil. NREs from root nodules of lentils were isolated and examined for plant growth-promoting traits, exopolysaccharide (EPS) and biofilm production, root metabolites, and the presence of nifH and nifK elements. The greenhouse experiment with the chosen NREs, i.e., Serratia plymuthica 33GS and Serratia sp. R6 significantly increased the germination rate, vigour index, development of nodules (in non-sterile soil) and fresh weight of nodules (33GS 94%, R6 61% growth) and length of the shoot (33GS 86%, R6 51.16%) as well as chlorophyll levels when compared to the uninoculated control. Scanning Electron Microscopy (SEM) revealed that both isolates could successfully colonize the roots and elicit root hair growth. The inoculation of the NREs resulted in specific changes in root exudation patterns. The plants with 33GS and R6 treatment significantly stimulated the exudation of triterpenes, fatty acids, and their methyl esters in comparison to the uninoculated plants, altering the rhizospheric microbial community structure. Proteobacteria dominated the rhizospheric microbiota in all the treatments. Treatment with 33GS or R6 also enhanced the relative abundance of other favourable microbes, including Rhizobium, Mesorhizobium, and Bradyrhizobium. The correlation network analysis of relative abundances resulted in numerous bacterial taxa, which were in cooperation with each other, having a possible role in plant growth promotion. The results indicate the significant role of NREs as plant growth promoters, which also includes their role in root exudation patterns, enhancement of soil nutrient status and modulation of rhizospheric microbiota, suggesting their prospects in sustainable, and bio-based agriculture.
Collapse
Affiliation(s)
- Sourav Debnath
- Department of Microbiology, Assam University, Silchar, India
| | | | | | - Kamlesh Choure
- Department of Biotechnology, AKS University, Satna, India
| | | | | | | | - Anita Tilwari
- Department of Microbiology, Barkatullah University, Bhopal, India
| | - D. K. Maheshwari
- Department of Botany and Microbiology, Gurukula Kangri University, Haridwar, Uttarakhand, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, India
| |
Collapse
|