1
|
Lin L, Feng K, Shao G, Gong S, Liu T, Chen F, Zhang X, Xie Q. Construction and efficacy of a recombinant QX-like infectious bronchitis virus vaccine strain. Virus Genes 2025; 61:355-364. [PMID: 40014292 DOI: 10.1007/s11262-025-02140-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 02/02/2025] [Indexed: 02/28/2025]
Abstract
Infectious bronchitis (IB) is a highly contagious disease caused by the avian infectious bronchitis virus (IBV). This disease mainly causes damage to the respiratory system and has brought serious harm to the poultry industry in China. At present, QX-like IBV is the most prevalent strain in China, which is highly pathogenic and causes severe nephritis. Based on the construction of the H120 infectious clone, this study successfully constructed and rescued the recombinant virus H120-S1/LMH by using RED/ET recombination engineering technology combined with ccdB reverse selection to replace the S1 gene of the H120 infectious clone with the S1 gene of the prevalent IBV LMH strain. The recombinant virus showed good genetic stability and propagation in 15 continuous generations on chick kidney cells (CK cells). To evaluate the protection of this candidate vaccine strain, we conducted a vaccination challenge test. The specific-pathogen-free (SPF) chicks were immunized at 3 days of age and challenged with the QX-like IBV virulent strain LMH after 14 days. The results showed that the recombinant virus could provide 90% protection against the virulent IBV LMH strain, and mortality was significantly reduced, indicating the potential of H120-S1/LMH as a candidate vaccine. This study provides a strategy for precisely and rapidly generating IBV vaccine candidates by reverse genetics and lays a foundation for the further development of a new IBV vaccine against prevalent strains.
Collapse
Affiliation(s)
- Lin Lin
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, People's Republic of China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642, People's Republic of China
- Zhongshan Innovation Center of South China Agricultural University, Zhongshan, 528400, People's Republic of China
| | - Keyu Feng
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, People's Republic of China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642, People's Republic of China
- Zhongshan Innovation Center of South China Agricultural University, Zhongshan, 528400, People's Republic of China
| | - Guanming Shao
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, People's Republic of China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642, People's Republic of China
| | - Shiying Gong
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, People's Republic of China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642, People's Republic of China
| | - Tongfei Liu
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, People's Republic of China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642, People's Republic of China
- Zhongshan Innovation Center of South China Agricultural University, Zhongshan, 528400, People's Republic of China
| | - Feng Chen
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, People's Republic of China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642, People's Republic of China
| | - Xinheng Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, People's Republic of China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642, People's Republic of China
- Zhongshan Innovation Center of South China Agricultural University, Zhongshan, 528400, People's Republic of China
| | - Qingmei Xie
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, People's Republic of China.
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642, People's Republic of China.
- Zhongshan Innovation Center of South China Agricultural University, Zhongshan, 528400, People's Republic of China.
| |
Collapse
|
2
|
Lu Y, Zeng Y, Luo H, Chen N, Zhao L, Zhang H, Xia J, Ping J. Rapid development of attenuated IBV vaccine candidates through a versatile backbone applicable to variants. NPJ Vaccines 2025; 10:60. [PMID: 40155419 PMCID: PMC11953439 DOI: 10.1038/s41541-025-01114-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/17/2025] [Indexed: 04/01/2025] Open
Abstract
The antigen variability of the infectious bronchitis virus (IBV) has hindered vaccine effectiveness and perpetuated its epidemic. We engineered a rapid attenuation method for IBV variants. The strategy involves creating the rH-CPDF7 backbone by recoding a segment of the H120 nonstructural protein (NSP) genome via codon pair deoptimization (CPD), facilitating S gene integration from IBV variants via transformation-associated recombination (TAR) cloning. These recombinant strains exhibited even lower pathogenicity, indicating the effectiveness of CPDF7 in reducing virulence. Importantly, the rH-CPDF7 backbone demonstrated versatility, being applicable to the development of attenuated strains for IBV variants, including the QX-type, TW-type, and GVI-type strains (different genotypes). In conclusion, our method allows for the rapid development of attenuated strains by integrating the S gene of IBV variants into the rH-CPDF7 backbone. These recombinant strains can elicit a strong immune response and provide effective protection against homologous challenges. This strategy is crucial for developing live-attenuated vaccines against emerging IBV strains.
Collapse
Affiliation(s)
- Yuanlu Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yiran Zeng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, 210095, Nanjing, China
| | - Haowei Luo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, 210095, Nanjing, China
| | - Na Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, 210095, Nanjing, China
| | - Lingcai Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, 210095, Nanjing, China
| | - Haitao Zhang
- Biotechnology Research Laboratory, Jiangsu Lihua Animal Husbandry Co., Ltd, 213168, Changzhou, China
| | - Jun Xia
- Xinjiang Academy of Animal Sciences Institute of Veterinary Medicine, Key Laboratory for Prevention and Control of Herbivorous Animal Diseases of the Ministry of Agriculture and Rural Affairs & Xinjiang Animal Disease Research Key Laboratory, 830000, Urumchi, China
| | - Jihui Ping
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, 210095, Nanjing, China.
| |
Collapse
|
3
|
Zhou Z, Liu X, Kang D. Antiviral Drug Discovery. Int J Mol Sci 2024; 25:7413. [PMID: 39000520 PMCID: PMC11242367 DOI: 10.3390/ijms25137413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
A vast and painful price has been paid in the battle against viruses in global health [...].
Collapse
Affiliation(s)
- Zhenzhen Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| |
Collapse
|
4
|
Xiong T, Xie H, Li L, Liang S, Huang M, Yu C, Zhuang T, Liang X, Liu D, Chen R. Prevalence, Genotype Diversity, and Distinct Pathogenicity of 205 Gammacoronavirus Infectious Bronchitis Virus Isolates in China during 2019-2023. Viruses 2024; 16:930. [PMID: 38932222 PMCID: PMC11209364 DOI: 10.3390/v16060930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Gammacoronavirus infectious bronchitis virus (IBV) causes a highly contagious disease in chickens and seriously endangers the poultry industry. The emergence and co-circulation of diverse IBV serotypes and genotypes with distinct pathogenicity worldwide pose a serious challenge to the development of effective intervention measures. In this study, we report the epidemic trends of IBV in China from 2019 to 2023 and a comparative analysis on the antigenic characteristics and pathogenicity of isolates among major prevalent lineages. Phylogenetic and recombination analyses based on the nucleotide sequences of the spike (S) 1 gene clustered a total of 205 isolates into twelve distinct lineages, with GI-19 as a predominant lineage (61.77 ± 4.56%) exhibiting an overall increasing trend over the past five years, and demonstrated that a majority of the variants were derived from gene recombination events. Further characterization of the growth and pathogenic properties of six representative isolates from different lineages classified four out of the six isolates as nephropathogenic types with mortality rates in one-day-old SPF chickens varying from 20-60%, one as a respiratory type with weak virulence, and one as a naturally occurring avirulent strain. Taken together, our findings illuminate the epidemic trends, prevalence, recombination, and pathogenicity of current IBV strains in China, providing key information for further strengthening the surveillance and pathogenicity studies of IBV.
Collapse
Affiliation(s)
- Ting Xiong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China
- Zhaoqing Branch of Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Hangao Xie
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China
- Zhaoqing Branch of Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Lin Li
- Key Laboratory of Manufacture Technology of Veterinary Bioproducts, Ministry of Agriculture and Rural Affairs, Zhaoqing 526238, China
| | - Shijin Liang
- Zhaoqing Branch of Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Meizhen Huang
- Zhaoqing Branch of Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Chuanzhao Yu
- Zhaoqing Branch of Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Tingting Zhuang
- Zhaoqing Branch of Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Xuejing Liang
- Zhaoqing Branch of Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Dingxiang Liu
- Zhaoqing Branch of Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Ruiai Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China
- Zhaoqing Branch of Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| |
Collapse
|
5
|
Wang H, Tian J, Zhao J, Zhao Y, Yang H, Zhang G. Current Status of Poultry Recombinant Virus Vector Vaccine Development. Vaccines (Basel) 2024; 12:630. [PMID: 38932359 PMCID: PMC11209050 DOI: 10.3390/vaccines12060630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Inactivated and live attenuated vaccines are the mainstays of preventing viral poultry diseases. However, the development of recombinant DNA technology in recent years has enabled the generation of recombinant virus vector vaccines, which have the advantages of preventing multiple diseases simultaneously and simplifying the vaccination schedule. More importantly, some can induce a protective immune response in the presence of maternal antibodies and offer long-term immune protection. These advantages compensate for the shortcomings of traditional vaccines. This review describes the construction and characterization of primarily poultry vaccine vectors, including fowl poxvirus (FPV), fowl adenovirus (FAdV), Newcastle disease virus (NDV), Marek's disease virus (MDV), and herpesvirus of turkey (HVT). In addition, the pathogens targeted and the immunoprotective effect of different poultry recombinant virus vector vaccines are also presented. Finally, this review discusses the challenges in developing vector vaccines and proposes strategies for improving immune efficacy.
Collapse
Affiliation(s)
- Haoran Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.W.); (J.T.); (J.Z.); (Y.Z.); (H.Y.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiaxin Tian
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.W.); (J.T.); (J.Z.); (Y.Z.); (H.Y.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jing Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.W.); (J.T.); (J.Z.); (Y.Z.); (H.Y.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ye Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.W.); (J.T.); (J.Z.); (Y.Z.); (H.Y.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Huiming Yang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.W.); (J.T.); (J.Z.); (Y.Z.); (H.Y.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Guozhong Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.W.); (J.T.); (J.Z.); (Y.Z.); (H.Y.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Feng H, Zhang J, Wang X, Guo Z, Wang L, Zhang K, Li J. Baicalin Protects Broilers against Avian Coronavirus Infection via Regulating Respiratory Tract Microbiota and Amino Acid Metabolism. Int J Mol Sci 2024; 25:2109. [PMID: 38396786 PMCID: PMC10888704 DOI: 10.3390/ijms25042109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/01/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
An increasing amount of evidence indicates that Baicalin (Bai, a natural glycosyloxyflavone compound) exhibits an antiviral effect against avian viruses. However, it remains unclear if the antiviral effect of Bai against infectious bronchitis virus (IBV) is exerted indirectly by modulating respiratory tract microbiota and/or their metabolites. In this study, we investigated the protection efficacy of Bai in protecting cell cultures and broilers from IBV infection and assessed modulation of respiratory tract microbiota and metabolites during infection. Bai was administered orally to broilers by being mixed in with drinking water for seven days. Ultimately, broilers were challenged with live IBV. The results showed that Bai treatment reduced respiratory tract symptoms, improved weight gain, slowed histopathological damage, reduced virus loads and decreased pro-inflammation cytokines production. Western blot analysis demonstrated that Bai treatment significantly inhibited Toll-like receptor 7 (TLR7), myeloid differentiation factor 88 (MyD88) and nuclear factor kappa-B (NF-κB) expression both in cell culture and cells of the trachea. Bai treatment reversed respiratory tract microbiota dysbiosis, as shown by 16S rDNA sequencing in the group of broilers inoculated with IBV. Indeed, we observed a decrease in Proteobacteria abundance and an increase in Firmicutes abundance. Metabolomics results suggest that the pentose phosphate pathway, amino acid and nicotinamide metabolism are linked to the protection conferred by Bai against IBV infection. In conclusion, these results indicated that further assessment of anti-IBV strategies based on Bai would likely result in the development of antiviral molecule(s) which can be administered by being mixed with feed or water.
Collapse
Affiliation(s)
- Haipeng Feng
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (H.F.); (J.Z.); (L.W.); (Z.G.)
| | - Jingyan Zhang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (H.F.); (J.Z.); (L.W.); (Z.G.)
| | - Xuezhi Wang
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China;
| | - Zhiting Guo
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (H.F.); (J.Z.); (L.W.); (Z.G.)
| | - Lei Wang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (H.F.); (J.Z.); (L.W.); (Z.G.)
| | - Kang Zhang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (H.F.); (J.Z.); (L.W.); (Z.G.)
| | - Jianxi Li
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (H.F.); (J.Z.); (L.W.); (Z.G.)
| |
Collapse
|
7
|
Abozeid HH. Global Emergence of Infectious Bronchitis Virus Variants: Evolution, Immunity, and Vaccination Challenges. Transbound Emerg Dis 2023; 2023:1144924. [PMID: 40303661 PMCID: PMC12017171 DOI: 10.1155/2023/1144924] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/19/2023] [Accepted: 10/26/2023] [Indexed: 05/02/2025]
Abstract
Infectious bronchitis is an acute, extremely contagious viral disease affecting chickens of all ages, leading to devastating economic losses in the poultry industry worldwide. Affected chickens show respiratory distress and/or nephritis, in addition to decrease of egg production and quality in layers. The avian coronavirus, infectious bronchitis virus (IBV), is a rapidly evolving virus due to the high frequency of mutations and recombination events that are common in coronaviruses. This leads to the continual emergence of novel genotypes that show variable or poor crossprotection. The immune response against IBV is complex. Passive, innate and adaptive humoral and cellular immunity play distinct roles in protection against IBV. Despite intensive vaccination using the currently available live-attenuated and inactivated IBV vaccines, IBV continues to circulate, evolve, and trigger outbreaks worldwide, indicating the urgent need to update the current vaccines to control the emerging variants. Different approaches for preparation of IBV vaccines, including DNA, subunit, peptides, virus-like particles, vectored and recombinant vaccines, have been tested in many studies to combat the disease. This review focuses on several key aspects related to IBV, including its clinical significance, the functional structure of the virus, the factors that contribute to its evolution and diversity, the types of immune responses against IBV, and the characteristics of both current and emerging IBV vaccines. The goal is to provide a comprehensive understanding of IBV and explore the emergence of variants, their dissemination around the world, and the challenges to define the efficient vaccination strategies.
Collapse
Affiliation(s)
- Hassanein H. Abozeid
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
8
|
Zhang P, Yang T, Sun Y, Qiao H, Hu N, Li X, Wang W, Zhang L, Cong Y. Development and Immunoprotection of Bacterium-like Particle Vaccine against Infectious Bronchitis in Chickens. Vaccines (Basel) 2023; 11:1292. [PMID: 37631859 PMCID: PMC10457988 DOI: 10.3390/vaccines11081292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Infectious bronchitis (IB) is a major threat to the global poultry industry. Despite the availability of commercial vaccines, the IB epidemic has not been effectively controlled. The exploration of novel IBV vaccines may provide a new way to prevent and control IB. In this study, BLP-S1, a bacterium-like particle displaying the S1 subunit of infectious bronchitis virus (IBV), was constructed using the GEM-PA surface display system. The immunoprotective efficacy results showed that BLP-S1 can effectively induce specific IgG and sIgA immune responses, providing a protection rate of 90% against IBV infection in 14-day-old commercial chickens. These results suggest that BLP-S1 has potential for the development of novel vaccines with good immunogenicity and immunoprotection.
Collapse
Affiliation(s)
- Pengju Zhang
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (P.Z.)
| | - Tiantian Yang
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Yixue Sun
- Department of Policies and Regulations, Changchun University, Changchun 130022, China
| | - Haiying Qiao
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (P.Z.)
| | - Nianzhi Hu
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (P.Z.)
| | - Xintao Li
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (P.Z.)
| | - Weixia Wang
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (P.Z.)
| | - Lichun Zhang
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (P.Z.)
| | - Yanlong Cong
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| |
Collapse
|