1
|
Martin Říhová J, Vodička R, Hypša V. An obligate symbiont of Haematomyzus elephantis with a strongly reduced genome resembles symbiotic bacteria in sucking lice. Appl Environ Microbiol 2025; 91:e0022025. [PMID: 40366182 DOI: 10.1128/aem.00220-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/02/2025] [Indexed: 05/15/2025] Open
Abstract
The parvorder Rhynchophthirina with a single genus Haematomyzus is a small group of ectoparasites of unclear phylogenetic position, related to sucking and chewing lice. Previous screening based on the 16S rRNA gene indicated that Haematomyzus harbors a symbiotic bacterium whose DNA exhibits a strong shift in nucleotide composition typical of obligate mutualistic symbionts in insects. Within Phthiraptera, the smallest known genomes are found in the symbionts associated with sucking lice, which feed exclusively on mammal blood, compared to the generally larger genomes of the symbionts inhabiting chewing lice, which feed on skin derivatives. In this study, we investigate the genome characteristics of the symbiont associated with Haematomyzus elephantis. We sequenced and assembled the H. elephantis metagenome, extracted a genome draft of its symbiotic bacterium, and showed that the symbiont has a significantly reduced genome, which is with 0.39 Mbp the smallest genome among the symbionts known from Phthiraptera. Multigenic phylogenetic analysis places the symbiont into one of three clusters composed of long-branched symbionts from other insects. More specifically, it clusters together with symbionts from several other sucking lice and also with Wigglesworthia glossinidia, an obligate symbiont of tsetse flies. Consistent with the dramatic reduction of its genome, the H. elephantis symbiont lost many metabolic capacities. However, it retained functional pathways for four B vitamins, a trait typical for symbionts in blood-feeding insects. Considering genomic, metabolic, and phylogenetic characteristics, the new symbiont closely resembles those known from several sucking lice rather than chewing lice.IMPORTANCERhynchophthirina is a unique small group of permanent ectoparasites that is closely related to both sucking and chewing lice. These two groups of lice differ in their morphology, ecology, and feeding strategies. As a consequence of their different dietary sources, i.e., mammals' blood vs vertebrate skin derivatives, they also exhibit distinct patterns of symbiosis with obligate bacterial symbionts. While Rhynchophthirina shares certain traits with sucking and chewing lice, the nature of its obligate symbiotic bacterium and its metabolic role is not known. In this study, we assemble the genome of symbiotic bacterium from Haematomyzus elephantis (Rhynchophthirina), demonstrating its close similarity and phylogenetic proximity to several symbionts of sucking lice. The genome is highly reduced (representing the smallest genome among louse-associated symbionts) and exhibits a significant loss of metabolic pathways. However, similar to other sucking louse symbionts, it retains essential pathways for the synthesis of several B vitamins.
Collapse
Affiliation(s)
- Jana Martin Říhová
- Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Roman Vodička
- The Prague Zoological Garden, Prague, Czech Republic
| | - Václav Hypša
- Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre, ASCR, v.v.i., České Budějovice, Czech Republic
| |
Collapse
|
2
|
Deng YP, Yao C, Fu YT, Zhuo Y, Zou JL, Pan HY, Peng YY, Liu GH. Analyses of the gut microbial composition of domestic pig louse Haematopinus suis. Microb Pathog 2024; 197:107106. [PMID: 39510362 DOI: 10.1016/j.micpath.2024.107106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Haematopinus suis is an obligatory ectoparasite of the domestic pig, serving as a vector of several swine pathogens and posing great threats to the pig industry. The gut microbiome of lice is thought of an important mediator of their healthy physiology. However, there is a great paucity of lice-associated microbial communities' structure and function. The current study aimed to profile the gut microbiome and to understand the microbial functions of swine lice by metagenomic sequencing and bioinformatics analyses. In total, 102,358 (77.2 %) nonredundant genes were cataloged, by contrast, only a small proportion of genes were assigned to microbial taxa and functional assemblages. Bacteria of known or potential public health significance such as Anaplasma phagocytophilum, Chlamydia trachomatis, Waddlia chondrophila, Bacillus cereus, and Leptotrichia goodfellowii were observed in all samples. The integrated microbial profile further illustrated the evolutionary relevance of endosymbionts and detailed the functional composition, and findings suggested H. suis may acquire adenosylcobalamin by feeding due to an adenosylcobalamin synthesis defect and a lack of complete synthases of endosymbionts. Sucking lice contained fewer functional genes compared with ticks and fleas probably because of the obligate host specificity of parasitic lice. In addition, the genes from the intestines contained encompassed most of the microbial functional genes in sucking lice. A wide range of unknown taxonomic and functional assemblages were discovered, which improves our understanding related to microbial features and physiological activities of sucking lice. In general, this study increases the characterization of the microbiota of lice and offers clues for preventing and controlling lice infestation in swine production in the future.
Collapse
Affiliation(s)
- Yuan-Ping Deng
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, China
| | - Chaoqun Yao
- Ross University School of Veterinary Medicine and One Health Center for Zoonoses and Tropical Infectious Diseases, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Yi-Tian Fu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, China; Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, Hunan Province, China
| | - Yu Zhuo
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, China
| | - Jian-Lei Zou
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, China
| | - Hai-Yu Pan
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, China
| | - Yan-Yan Peng
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, China
| | - Guo-Hua Liu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, China.
| |
Collapse
|
3
|
Martin Říhová J, Gupta S, Nováková E, Hypša V. Fur microbiome as a putative source of symbiotic bacteria in sucking lice. Sci Rep 2024; 14:22326. [PMID: 39333204 PMCID: PMC11436785 DOI: 10.1038/s41598-024-73026-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
Symbiosis between insects and bacteria has been established countless times. While it is well known that the symbionts originated from a variety of different bacterial taxa, it is usually difficult to determine their environmental source and a route of their acquisition by the host. In this study, we address this question using a model of Neisseriaceae symbionts in rodent lice. These bacteria established their symbiosis independently with different louse taxa (Polyplax, Hoplopleura, Neohaematopinus), most likely from the same environmental source. We first applied amplicon analysis to screen for candidate source bacterium in the louse environment. Since lice are permanent ectoparasites, often specific to the particular host, we screened various microbiomes associated with three rodent species (Microtus arvalis, Clethrionomys glareolus, and Apodemus flavicollis). The analyzed samples included fur, skin, spleen, and other ectoparasites sampled from these rodents. The fur microbiome data revealed a Neisseriaceae bacterium, closely related to the known louse symbionts. The draft genomes of the environmental Neisseriaceae, assembled from all three rodent hosts, converged to a remarkably small size of approximately 1.4 Mbp, being even smaller than the genomes of the related symbionts. Our results suggest that the rodent fur microbiome can serve as a source for independent establishment of bacterial symbiosis in associated louse species. We further propose a hypothetical scenario of the genome evolution during the transition of a free-living bacterium to the member of the rodent fur-associated microbiome and subsequently to the facultative and obligate louse symbionts.
Collapse
Affiliation(s)
- Jana Martin Říhová
- Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Shruti Gupta
- Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Eva Nováková
- Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre, ASCR, v.v.i, České Budějovice, Czech Republic
| | - Václav Hypša
- Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
- Institute of Parasitology, Biology Centre, ASCR, v.v.i, České Budějovice, Czech Republic.
| |
Collapse
|
4
|
Sosa-Jiménez VM, Kvist S, Manzano-Marín A, Oceguera-Figueroa A. Discovery of a novel symbiotic lineage associated with a hematophagous leech from the genus Haementeria. Microbiol Spectr 2024; 12:e0428623. [PMID: 38842327 PMCID: PMC11218487 DOI: 10.1128/spectrum.04286-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/29/2024] [Indexed: 06/07/2024] Open
Abstract
Similarly to other strict blood feeders, leeches from the Haementeria genus (Hirudinida: Glossiphoniidae) have established a symbiotic association with bacteria harbored intracellularly in esophageal bacteriomes. Previous genome sequence analyses of these endosymbionts revealed co-divergence with their hosts, a strong genome reduction, and a simplified metabolism largely dedicated to the production of B vitamins, which are nutrients lacking from a blood diet. 'Candidatus Providencia siddallii' has been identified as the obligate nutritional endosymbiont of a monophyletic clade of Mexican and South American Haementeria spp. However, the Haementeria genus includes a sister clade of congeners from Central and South America, where the presence or absence of the aforementioned symbiont taxon remains unknown. In this work, we report on a novel bacterial endosymbiont found in a representative from this Haementeria clade. We found that this symbiont lineage has evolved from within the Pluralibacter genus, known mainly from clinical but also environmental strains. Similarly to Ca. Providencia siddallii, the Haementeria-associated Pluralibacter symbiont displays clear signs of genome reduction, accompanied by an A+T-biased sequence composition. Genomic analysis of its metabolic potential revealed a retention of pathways related to B vitamin biosynthesis, supporting its role as a nutritional endosymbiont. Finally, comparative genomics of both Haementeria symbiont lineages suggests that an ancient Providencia symbiont was likely replaced by the novel Pluralibacter one, thus constituting the first reported case of nutritional symbiont replacement in a leech without morphological changes in the bacteriome. IMPORTANCE Obligate symbiotic associations with a nutritional base have likely evolved more than once in strict blood-feeding leeches. Unlike those symbioses found in hematophagous arthropods, the nature, identity, and evolutionary history of these remains poorly studied. In this work, we further explored obligate nutritional associations between Haementeria leeches and their microbial symbionts, which led to the unexpected discovery of a novel symbiosis with a member of the Pluralibacter genus. When compared to Providencia siddallii, an obligate nutritional symbiont of other Haementeria leeches, this novel bacterial symbiont shows convergent retention of the metabolic pathways involved in B vitamin biosynthesis. Moreover, the genomic characteristics of this Pluralibacter symbiont suggest a more recent association than that of Pr. siddallii and Haementeria. We conclude that the once-thought stable associations between blood-feeding Glossiphoniidae and their symbionts (i.e., one bacteriome structure, one symbiont lineage) can break down, mirroring symbiont turnover observed in various arthropod lineages.
Collapse
Affiliation(s)
- Víctor Manuel Sosa-Jiménez
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autonoma de México, Ciudad de México, Mexico
| | - Sebastian Kvist
- Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Alejandro Manzano-Marín
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Alejandro Oceguera-Figueroa
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autonoma de México, Ciudad de México, Mexico
| |
Collapse
|
5
|
Koga R, Moriyama M, Nozaki T, Fukatsu T. Genome analysis of " Candidatus Aschnera chinzeii," the bacterial endosymbiont of the blood-sucking bat fly Penicillidia jenynsii (Insecta: Diptera: Nycteribiidae). Front Microbiol 2024; 14:1336919. [PMID: 38318130 PMCID: PMC10841577 DOI: 10.3389/fmicb.2023.1336919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/26/2023] [Indexed: 02/07/2024] Open
Abstract
Insect-microbe endosymbiotic associations are omnipresent in nature, wherein the symbiotic microbes often play pivotal biological roles for their host insects. In particular, insects utilizing nutritionally imbalanced food sources are dependent on specific microbial symbionts to compensate for the nutritional deficiency via provisioning of B vitamins in blood-feeding insects, such as tsetse flies, lice, and bedbugs. Bat flies of the family Nycteribiidae (Diptera) are blood-sucking ectoparasites of bats and shown to be associated with co-speciating bacterial endosymbiont "Candidatus Aschnera chinzeii," although functional aspects of the microbial symbiosis have been totally unknown. In this study, we report the first complete genome sequence of Aschnera from the bristled bat fly Penicillidia jenynsii. The Aschnera genome consisted of a 748,020 bp circular chromosome and a 18,747 bp circular plasmid. The chromosome encoded 603 protein coding genes (including 3 pseudogenes), 33 transfer RNAs, and 1 copy of 16S/23S/5S ribosomal RNA operon. The plasmid contained 10 protein coding genes, whose biological function was elusive. The genome size, 0.77 Mbp, was drastically reduced in comparison with 4-6 Mbp genomes of free-living γ-proteobacteria. Accordingly, the Aschnera genome was devoid of many important functional genes, such as synthetic pathway genes for purines, pyrimidines, and essential amino acids. On the other hand, the Aschnera genome retained complete or near-complete synthetic pathway genes for biotin (vitamin B7), tetrahydrofolate (vitamin B9), riboflavin (vitamin B2), and pyridoxal 5'-phosphate (vitamin B6), suggesting that Aschnera provides these vitamins and cofactors that are deficient in the blood meal of the host bat fly. Similar retention patterns of the synthetic pathway genes for vitamins and cofactors were also observed in the endosymbiont genomes of other blood-sucking insects, such as Riesia of human lice, Arsenophonus of louse flies, and Wigglesworthia of tsetse flies, which may be either due to convergent evolution in the blood-sucking host insects or reflecting the genomic architecture of Arsenophonus-allied bacteria.
Collapse
Affiliation(s)
- Ryuichi Koga
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Minoru Moriyama
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Tomonari Nozaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
6
|
Martin Říhová J, Gupta S, Darby AC, Nováková E, Hypša V. Arsenophonus symbiosis with louse flies: multiple origins, coevolutionary dynamics, and metabolic significance. mSystems 2023; 8:e0070623. [PMID: 37750682 PMCID: PMC10654098 DOI: 10.1128/msystems.00706-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 09/27/2023] Open
Abstract
IMPORTANCE Insects that live exclusively on vertebrate blood utilize symbiotic bacteria as a source of essential compounds, e.g., B vitamins. In louse flies, the most frequent symbiont originated in genus Arsenophonus, known from a wide range of insects. Here, we analyze genomic traits, phylogenetic origins, and metabolic capacities of 11 Arsenophonus strains associated with louse flies. We show that in louse flies, Arsenophonus established symbiosis in at least four independent events, reaching different stages of symbiogenesis. This allowed for comparative genomic analysis, including convergence of metabolic capacities. The significance of the results is twofold. First, based on a comparison of independently originated Arsenophonus symbioses, it determines the importance of individual B vitamins for the insect host. This expands our theoretical insight into insect-bacteria symbiosis. The second outcome is of methodological significance. We show that the comparative approach reveals artifacts that would be difficult to identify based on a single-genome analysis.
Collapse
Affiliation(s)
- Jana Martin Říhová
- Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Shruti Gupta
- Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Alistair C. Darby
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Eva Nováková
- Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
- Institute of Parasitology, Biology Centre, ASCR, v.v.i., České Budějovice, Czechia
| | - Václav Hypša
- Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
- Institute of Parasitology, Biology Centre, ASCR, v.v.i., České Budějovice, Czechia
| |
Collapse
|