1
|
Li X, Pang Y, Jiang L, Liu L, Zhou J, Jin C, Wang Q, Sun H, Li Q, Chen Z, Qin J, Mu J, Liu B, Zhang Q, Liu Y, Feng L, Wang L. Two-component system GrpP/GrpQ promotes pathogenicity of uropathogenic Escherichia coli CFT073 by upregulating type 1 fimbria. Nat Commun 2025; 16:607. [PMID: 39799152 PMCID: PMC11724981 DOI: 10.1038/s41467-025-55982-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is a major cause of urinary tract infections (UTIs). Invasion into bladder epithelial cells (BECs) on the bladder luminal surface via type 1 fimbria is the first critical step in UPEC infection. Although type 1 fimbria expression increases during UPEC invasion of BECs, the underlying regulatory mechanisms remain poorly understood. This study reported a previously uncharacterized two-component system (TCS) GrpP/GrpQ that directly activates type 1 fimbria expression to promote UPEC invasion and therefore pathogenicity in response to D-serine present in the host urine. grpP/grpQ mutation severely impaired UPEC invasion of BECs and decreased the bacterial burden and formation of intracellular bacterial communities in mouse bladders during acute UTI. grpP/grpQ is widely present in UPEC genomes but rarely in other E. coli genomes, suggesting that this TCS specifically contributes to UPEC evolution. This study revealed a new pathway for virulence activation in response to host cues, providing further insight into UPEC pathogenesis and a promising target for UTI treatment.
Collapse
Affiliation(s)
- Xueping Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Yu Pang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Lingyan Jiang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Le Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Jiarui Zhou
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Chen Jin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Qian Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Hongmin Sun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Qing Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Zhen Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Jingliang Qin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Jianwei Mu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Bin Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Qiyue Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Yutao Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Lu Feng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China.
- Nankai International Advanced Research Institute, Nankai University Shenzhen, Shenzhen, China.
| | - Lei Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China.
- Southwest United Graduate School, Kunming, 650092, China.
| |
Collapse
|
2
|
Debandi M, Carrica M, Hentschker C, Baroli C, Völker U, Rodriguez ME, Surmann K, Lamberti Y. Role of the Putative Histidine Kinase BP1092 in Bordetella pertussis Virulence Regulation and Intracellular Survival. J Proteome Res 2024; 23:1666-1678. [PMID: 38644792 DOI: 10.1021/acs.jproteome.3c00817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Bordetella pertussis persists inside host cells, and virulence factors are crucial for intracellular adaptation. The regulation of B. pertussis virulence factor transcription primarily occurs through the modulation of the two-component system (TCS) known as BvgAS. However, additional regulatory systems have emerged as potential contributors to virulence regulation. Here, we investigate the impact of BP1092, a putative TCS histidine kinase that shows increased levels after bacterial internalization by macrophages, on B. pertussis proteome adaptation under nonmodulating (Bvg+) and modulating (Bvg-) conditions. Using mass spectrometry, we compare B. pertussis wild-type (wt), a BP1092-deficient mutant (ΔBP1092), and a ΔBP1092 trans-complemented strain under both conditions. We find an altered abundance of 10 proteins, including five virulence factors. Specifically, under nonmodulating conditions, the mutant strain showed decreased levels of FhaB, FhaS, and Cya compared to the wt. Conversely, under modulating conditions, the mutant strain exhibited reduced levels of BvgA and BvgS compared to those of the wt. Functional assays further revealed that the deletion of BP1092 gene impaired B. pertussis ability to survive within human macrophage THP-1 cells. Taken together, our findings allow us to propose BP1092 as a novel player involved in the intricate regulation of B. pertussis virulence factors and thus in adaptation to the intracellular environment. The data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD041940.
Collapse
Affiliation(s)
- Martina Debandi
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Mariela Carrica
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Christian Hentschker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald 17475, Germany
| | - Carlos Baroli
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald 17475, Germany
| | - Maria Eugenia Rodriguez
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Kristin Surmann
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald 17475, Germany
| | - Yanina Lamberti
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| |
Collapse
|