1
|
Wang S, Xu Z, Liu Y, Yu M, Zhang T, Liu P, Qi X, Chen Y, Meng L, Guo R, Zhang L, Fan W, Gao L, Duan Y, Zhang Y, Cui H, Gao Y. OASL suppresses infectious bursal disease virus replication by targeting VP2 for degrading through the autophagy pathway. J Virol 2024; 98:e0018124. [PMID: 38639485 PMCID: PMC11092321 DOI: 10.1128/jvi.00181-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/11/2024] [Indexed: 04/20/2024] Open
Abstract
Infectious bursal disease (IBD) is an acute and fatal immunosuppressive disease caused by infectious bursal disease virus (IBDV). As an obligate intracellular parasite, IBDV infection is strictly regulated by host factors. Knowledge on the antiviral activity and possible mechanism of host factors might provide the theoretical basis for the prevention and control of IBD. In this study, RNA-sequencing results indicated that many host factors were induced by IBDV infection, among which the expression levels of OASL (2´,5´-oligadenylate synthetase-like protein) was significantly upregulated. OASL overexpression significantly inhibited IBDV replication, whereas OASL knockdown promoted IBDV replication. Interestingly, the antiviral ability of OASL was independent of its canonical enzymatic activity, i.e., OASL targeted viral protein VP2 for degradation, depending on the autophagy receptor p62/SQSTM1 in the autophagy pathway. Additionally, the 316 lysine (K) of VP2 was the key site for autophagy degradation, and its replacement with arginine disrupted VP2 degradation induced by OASL and enhanced IBDV replication. Importantly, our results for the first time indicate a unique and potent defense mechanism of OASL against double-stranded RNA virus by interaction with viral proteins, which leads to their degradation. IMPORTANCE OASL (2´,5´-oligadenylate synthetase-like protein) exhibits broad-spectrum antiviral effects against single-stranded RNA viruses in mammals, potentially serving as a promising target for novel antiviral strategies. However, its role in inhibiting the replication of double-stranded RNA viruses (dsRNA viruses), such as infectious bursal disease virus (IBDV), in avian species remains unclear. Our findings indicated a unique and potent defense mechanism of OASL against dsRNA viruses. It has been previously shown in mammals that OASL inhibits virus replication through increasing interferon production. The groundbreaking aspect of our study is the finding that OASL has the ability to interact with IBDV viral protein VP2 and target it for degradation and thus exerts its antiviral effect. Our results reveal the interaction between avian natural antiviral immune response and IBDV infection. Our study not only enhances our understanding of bird defenses against viral infections but can also inform strategies for poultry disease management.
Collapse
Affiliation(s)
- Suyan Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhuangzhuang Xu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yongzhen Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mengmeng Yu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tao Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Peng Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaole Qi
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuntong Chen
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lingzhai Meng
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ru Guo
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Li Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wenrui Fan
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Li Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yulu Duan
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yanping Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyu Cui
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yulong Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- WOAH Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
- National Poultry Laboratory Animal Resource Center, Harbin, China
| |
Collapse
|
2
|
Dong JG, Chen MR, Rao D, Zhang N, He S, Na L. Genome-wide analysis of long noncoding RNA profiles in pseudorabies-virus-infected PK15 cells. Arch Virol 2023; 168:240. [PMID: 37668724 DOI: 10.1007/s00705-023-05859-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/10/2023] [Indexed: 09/06/2023]
Abstract
Recently, an increasing number of studies have shown that long noncoding RNAs (lncRNAs) are involved in host metabolism after infection with pseudorabies virus (PRV). In our study, via RNA sequencing analysis, a total of 418 mRNAs, 137 annotated lncRNAs, and 312 new lncRNAs were found to be differentially expressed. These lncRNAs were closely associated with metabolic regulation and immunity-related signalling pathways, including the T-cell receptor signalling pathway, chemokine signalling pathway, mitogen-activated protein kinase (MAPK) signalling pathway, TNF signalling pathway, Ras signalling pathway, calcium signalling pathway, and phosphatidylinositol signalling system. Real-time PCR indicated that several mRNAs and lncRNAs involved in the regulation of the immune effector process, T-cell receptor signalling pathway, TNF signalling pathway, MAPK signalling pathway, and chemokine signalling pathways were significantly expressed. These mRNAs and lncRNAs might play a role in PRV infection.
Collapse
Affiliation(s)
- Jian-Guo Dong
- School of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, 464000, China
| | - Ming-Rui Chen
- School of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, 464000, China
| | - Dan Rao
- School of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, 464000, China
| | - Ning Zhang
- Jiangsu Vocational College Agriculture and Forestry, Jurong, 212400, China
- Henan Fengyuan Hepu Agriculture and Animal Husbandry Co. LTD, Zhumadian, 463900, China
| | - Shuhai He
- School of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, 464000, China.
| | - Lei Na
- College of Animal Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China.
| |
Collapse
|