1
|
Arslan NP, Azad F, Orak T, Budak-Savas A, Ortucu S, Dawar P, Baltaci MO, Ozkan H, Esim N, Taskin M. A review on bacteria-derived antioxidant metabolites: their production, purification, characterization, potential applications, and limitations. Arch Pharm Res 2025; 48:253-292. [PMID: 40208553 PMCID: PMC12058845 DOI: 10.1007/s12272-025-01541-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 04/02/2025] [Indexed: 04/11/2025]
Abstract
Antioxidants are organic molecules that scavenge reactive oxygen species (ROS) and reactive nitrogen species (RNS), thereby maintaining cellular redox balance in living organisms. The human body synthesizes endogenous antioxidants, whereas humans obtain exogenous antioxidants from other organisms such as plants, animals, fungi, and bacteria. This review primarily focuses on the antioxidant potential of natural metabolites and extracts from five major bacterial phyla, including the well-studied Actinobacteria and Cyanobacteria, as well as less-studied Bacteroides, Firmicutes, and Proteobacteria. The literature survey revealed that the metabolites and the extracts with antioxidant activity can be obtained from bacterial cells and their culture supernatants. The metabolites with antioxidant activity include pigments, phycobiliproteins, polysaccharides, mycosporins-like amino acids, peptides, phenolic compounds, and alkaloids. Both metabolites and extracts demonstrate in vitro antioxidant capacity through radical-scavenging, metal-reducing, and metal-chelating activity assays. In in vivo models, they can scavenge ROS and RNS directly and/or indirectly eliminate them by enhancing the activities of antioxidant enzymes, such as catalase, superoxide dismutase, and glutathione peroxidase. Due to their antioxidant activities, they may find applications in the cosmetic industry as anti-aging agents for the skin and in medicine as drugs or supplements for combating oxidative stress-related disorders, such as neurodegenerative diseases and diabetes. The literature survey also elucidated that some metabolites and extracts with antioxidant activity also exhibited strong antimicrobial properties. Therefore, we consider that they may have future applications in the treatment of infectious diseases, the preparation of pathogen-free healthy foods, and the extension of food shelf life.
Collapse
Affiliation(s)
| | - Fakhrul Azad
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Tugba Orak
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, 25240, Erzurum, Turkey
| | - Aysenur Budak-Savas
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Serkan Ortucu
- Department of Molecular Biology and Genetics, Science Faculty, Erzurum Technical University, Erzurum, Turkey
| | - Pranav Dawar
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, USA
| | - Mustafa Ozkan Baltaci
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, 25240, Erzurum, Turkey
| | - Hakan Ozkan
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, 25240, Erzurum, Turkey
| | - Nevzat Esim
- Department of Molecular Biology and Genetics, Science and Art Faculty, Bingol University, Bingol, Turkey
| | - Mesut Taskin
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, 25240, Erzurum, Turkey.
| |
Collapse
|
2
|
Tancredi M, Carandente Coscia C, Russo Krauss I, D’Errico G. Antioxidant Properties of Biosurfactants: Multifunctional Biomolecules with Added Value in Formulation Chemistry. Biomolecules 2025; 15:308. [PMID: 40001611 PMCID: PMC11852826 DOI: 10.3390/biom15020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/05/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Biosurfactants, amphiphilic metabolites produced by bacteria and yeasts, fulfill a variety of functions in microbial life. They exhibit a well-recognized multifunctionality, spanning from the reduction in surface tension to specific biological activities, including antimicrobial, antiviral, anti-inflammatory, and anticancer effects. These compounds have the potential to serve as environmentally friendly alternatives to synthetic surfactants in industrial formulations, where they could act as emulsifiers and wetting agents. The exploitation of their full potentiality could be a significant added value. Biosurfactants are often cited as effective antioxidants. However, experimental evidence for their antioxidant activity/capacity is sparse. To shed light on the subject, in this review we collect and critically examine all the available literature data for each of the major classes of microbial biosurfactants: rhamnolipids, mannosylerythritol lipids, sophorolipids, and lipopeptides. Despite the variability arising from the diverse composition and polydispersity of the samples analyzed, along with the variety of testing methodologies, the findings consistently indicate a moderate-to-strong antioxidant capacity. Several hypotheses are advanced about the molecular mechanisms behind this action; however, further studies are needed to gain a molecular understanding. This knowledge would fully define the biological roles of biosurfactants and is a prerequisite for the development of innovative formulations based on the valorization of their antioxidant properties.
Collapse
Affiliation(s)
- Matilde Tancredi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia 4, I-80126 Naples, Italy; (M.T.); (C.C.C.); (I.R.K.)
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Via della Lastruccia 3, I-50019 Florence, Italy
| | - Carlo Carandente Coscia
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia 4, I-80126 Naples, Italy; (M.T.); (C.C.C.); (I.R.K.)
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Via della Lastruccia 3, I-50019 Florence, Italy
| | - Irene Russo Krauss
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia 4, I-80126 Naples, Italy; (M.T.); (C.C.C.); (I.R.K.)
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Via della Lastruccia 3, I-50019 Florence, Italy
| | - Gerardino D’Errico
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia 4, I-80126 Naples, Italy; (M.T.); (C.C.C.); (I.R.K.)
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Via della Lastruccia 3, I-50019 Florence, Italy
| |
Collapse
|
3
|
Vahidinasab M, Thewes L, Abrishamchi B, Lilge L, Reiße S, Benatto Perino EH, Hausmann R. In Vivo Quantification of Surfactin Nonribosomal Peptide Synthetase Complexes in Bacillus subtilis. Microorganisms 2024; 12:2381. [PMID: 39597769 PMCID: PMC11596262 DOI: 10.3390/microorganisms12112381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Surfactin, a potent biosurfactant produced by Bacillus subtilis, is synthesized using a non-ribosomal peptide synthetase (NRPS) encoded by the srfAA-AD operon. Despite its association with quorum sensing via the ComX pheromone, the dynamic behavior and in vivo quantification of the NRPS complex remain underexplored. This study established an in vivo quantification system using fluorescence labeling to monitor the availability of surfactin-forming NRPS subunits (SrfAA, SrfAB, SrfAC, and SrfAD) during bioprocesses. Four Bacillus subtilis sensor strains were constructed by fusing these subunits with the megfp gene, resulting in strains BMV25, BMV26, BMV27, and BMV28. These strains displayed growth and surfactin productivity similar to those of the parental strain, BMV9. Fluorescence signals indicated varying NRPS availability, with BMV27 showing the highest and BMV25 showing the lowest relative fluorescence units (RFUs). RFUs were converted to the relative number of NRPS molecules using open-source FPCountR package. During bioprocesses, NRPS availability peaked at the end of the exponential growth phase and declined in the stationary phase, suggesting reduced NRPS productivity under nutrient-limited conditions and potential post-translational regulation. This study provides a quantitative framework for monitoring NRPS dynamics in vivo, offering insights into optimizing surfactin production. The established sensor strains and quantification system enable the real-time monitoring of NRPS availability, aiding bioprocess optimization for industrial applications of surfactin and potentially other non-ribosomal peptides.
Collapse
Affiliation(s)
- Maliheh Vahidinasab
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany; (L.T.); (B.A.); (L.L.); (E.H.B.P.)
| | - Lisa Thewes
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany; (L.T.); (B.A.); (L.L.); (E.H.B.P.)
| | - Bahar Abrishamchi
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany; (L.T.); (B.A.); (L.L.); (E.H.B.P.)
| | - Lars Lilge
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany; (L.T.); (B.A.); (L.L.); (E.H.B.P.)
| | - Susanne Reiße
- Imaging Unit, Core Facility of Hohenheim, Emil-Wolff-Strasse 12, 70599 Stuttgart, Germany;
| | - Elvio Henrique Benatto Perino
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany; (L.T.); (B.A.); (L.L.); (E.H.B.P.)
| | - Rudolf Hausmann
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany; (L.T.); (B.A.); (L.L.); (E.H.B.P.)
| |
Collapse
|
4
|
Bagheri AM, Mirzahashemi M, Salarpour S, Dehghnnoudeh Y, Banat IM, Ohadi M, Dehghannoudeh G. Potential anti-aging applications of microbial-derived surfactantsin cosmetic formulations. Crit Rev Biotechnol 2024:1-22. [PMID: 39294002 DOI: 10.1080/07388551.2024.2393420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 07/14/2024] [Accepted: 07/30/2024] [Indexed: 09/20/2024]
Abstract
The skin aging process is a complex interaction of genetic, epigenetic, and environmental factors, such as chemical pollution and UV radiation. There is growing evidence that biosurfactants, especially those of microbial origin, have distinct age-supportive effects through different mechanisms, such as stimulation of fibroblast growth, high antioxidant capacities, and favorable anti-inflammatory properties. With a growing financial contribution of more than 15 m€per year, microbial surfactants (MSs) display unique biological effects on the skin including improved cell mobility, better nutrient access, and facilitated cellular growth under harsh conditions. Their biodegradable nature, unusual surface activity, good safety profile and tolerance to high temperature and pH variations widen their potential spectrum in biomedical and pharmaceutical applications. MSs typically have lower critical micelle concentration (CMC) levels than chemical surfactants enhancing their effectiveness. As natural surfactants, MSs are considered possible "green" alternatives to synthetic surfactants with better biodegradability, sustainability, and beneficial functional properties. This review therefore aims to explore the potential impacts of MSs as anti-aging ingredients.
Collapse
Affiliation(s)
- Amir Mohammad Bagheri
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Mirzahashemi
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Soodeh Salarpour
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Yasmin Dehghnnoudeh
- Departeman of Biology, Faculty of Science, York University, Toronto, Ontario, Canada
| | - Ibrahim M Banat
- School of Biomedical Sciences, Faculty of Life & Health Sciences, Ulster University, Coleraine, N. Ireland, UK
| | - Mandana Ohadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Dehghannoudeh
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
5
|
Leconte A, Jacquin J, Duban M, Deweer C, Trapet P, Laruelle F, Farce A, Compère P, Sahmer K, Fiévet V, Hoste A, Siah A, Lounès-Hadj Sahraoui A, Jacques P, Coutte F, Deleu M, Muchembled J. Deciphering the mechanisms involved in reduced sensitivity to azoles and fengycin lipopeptide in Venturia inaequalis. Microbiol Res 2024; 286:127816. [PMID: 38964072 DOI: 10.1016/j.micres.2024.127816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/06/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024]
Abstract
Apple scab, caused by the hemibiotrophic fungus Venturia inaequalis, is currently the most common and damaging disease in apple orchards. Two strains of V. inaequalis (S755 and Rs552) with different sensitivities to azole fungicides and the bacterial metabolite fengycin were compared to determine the mechanisms responsible for these differences. Antifungal activity tests showed that Rs552 had reduced sensitivity to tebuconazole and tetraconazole, as well as to fengycin alone or in a binary mixture with other lipopeptides (iturin A, pumilacidin, lichenysin). S755 was highly sensitive to fengycin, whose activity was close to that of tebuconazole. Unlike fengycin, lipopeptides from the iturin family (mycosubtilin, iturin A) had similar activity on both strains, while those from the surfactin family (lichenysin, pumilacidin) were not active, except in binary mixtures with fengycin. The activity of lipopeptides varies according to their family and structure. Analyses to determine the difference in sensitivity to azoles (which target the CYP51 enzyme involved in the ergosterol biosynthesis pathway) showed that the reduced sensitivity in Rs552 is linked to (i) a constitutive increased expression of the Cyp51A gene caused by insertions in the upstream region and (ii) greater efflux by membrane pumps with the involvement of ABC transporters. Microscopic observations revealed that fengycin, known to interact with plasma membranes, induced morphological and cytological changes in cells from both strains. Sterol and phospholipid analyses showed a higher level of ergosta-7,22-dien-3-ol and a lower level of PI(C16:0/C18:1) in Rs552 compared with S755. These differences could therefore influence the composition of the plasma membrane and explain the differential sensitivity of the strains to fengycin. However, the similar antifungal activities of mycosubtilin and iturin A in the two strains indirectly indicate that sterols are probably not involved in the fengycin resistance mechanism. This leads to the conclusion that different mechanisms are responsible for the difference in susceptibility to azoles or fengycin in the strains studied.
Collapse
Affiliation(s)
- Aline Leconte
- JUNIA, UMRt BioEcoAgro 1158-INRAE, Plant Secondary Metabolites Team, Charles Viollette Institute, Lille F-59000, France; University of Lille, UMRt BioEcoAgro 1158-INRAE, Microbial Secondary Metabolites team, Charles Viollette Institute, Lille F-59000, France; University of Liège, UMRt BioEcoAgro 1158-INRAE, Microbial Secondary Metabolites team, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, Gembloux B-5030, Belgium
| | - Justine Jacquin
- JUNIA, UMRt BioEcoAgro 1158-INRAE, Plant Secondary Metabolites Team, Charles Viollette Institute, Lille F-59000, France
| | - Matthieu Duban
- University of Lille, UMRt BioEcoAgro 1158-INRAE, Microbial Secondary Metabolites team, Charles Viollette Institute, Lille F-59000, France
| | - Caroline Deweer
- JUNIA, UMRt BioEcoAgro 1158-INRAE, Plant Secondary Metabolites Team, Charles Viollette Institute, Lille F-59000, France
| | - Pauline Trapet
- JUNIA, UMRt BioEcoAgro 1158-INRAE, Plant Secondary Metabolites Team, Charles Viollette Institute, Lille F-59000, France
| | - Frédéric Laruelle
- Unité de Chimie Environnementale et Interactions sur le Vivant (EA 4492), Université Littoral Côte d'Opale, CEDEX CS 80699, Calais 62228, France
| | - Amaury Farce
- Université Lille, Inserm, CHU Lille, U1286 - INFINITE - Institut de recherche translationnelle sur l'inflammation, Lille F-59000, France
| | - Philippe Compère
- Laboratoire de morphologie fonctionnelle et évolutive, UR FOCUS, and Centre de recherche appliquée et d'enseignement en microscopie (CAREM), Université de Liège, Liège, Belgium
| | - Karin Sahmer
- Université Lille, IMT Lille Douai, Univ. Artois, JUNIA, ULR 4515 - LGCgE, Laboratoire de Génie Civil et geo-Environnement, Lille F-59000, France
| | - Valentin Fiévet
- JUNIA, UMRt BioEcoAgro 1158-INRAE, Plant Secondary Metabolites Team, Charles Viollette Institute, Lille F-59000, France
| | - Alexis Hoste
- University of Liège, UMRt BioEcoAgro 1158-INRAE, Microbial Secondary Metabolites team, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, Gembloux B-5030, Belgium
| | - Ali Siah
- JUNIA, UMRt BioEcoAgro 1158-INRAE, Plant Secondary Metabolites Team, Charles Viollette Institute, Lille F-59000, France
| | - Anissa Lounès-Hadj Sahraoui
- Unité de Chimie Environnementale et Interactions sur le Vivant (EA 4492), Université Littoral Côte d'Opale, CEDEX CS 80699, Calais 62228, France
| | - Philippe Jacques
- University of Liège, UMRt BioEcoAgro 1158-INRAE, Microbial Secondary Metabolites team, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, Gembloux B-5030, Belgium
| | - François Coutte
- University of Lille, UMRt BioEcoAgro 1158-INRAE, Microbial Secondary Metabolites team, Charles Viollette Institute, Lille F-59000, France
| | - Magali Deleu
- University of Liège, UMRt BioEcoAgro 1158-INRAE, Microbial Secondary Metabolites team, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, Gembloux B-5030, Belgium
| | - Jérôme Muchembled
- JUNIA, UMRt BioEcoAgro 1158-INRAE, Plant Secondary Metabolites Team, Charles Viollette Institute, Lille F-59000, France.
| |
Collapse
|
6
|
Yang X, Fang L, Shen J, Tan Z, Zeng W, Peng M, Xiao N. Lipid-lowering and antioxidant effects of Polygonatum fermented liquor: a study on intestinal microbiota and brain-gut axis in mice. Front Nutr 2024; 11:1428228. [PMID: 39221162 PMCID: PMC11362044 DOI: 10.3389/fnut.2024.1428228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
INTRODUCTION This study aims to investigate the effects of Polygonatum fermented liquor (PFL) on improving lipid metabolism and oxidative stress in mice by regulating the gut microbiota. METHODS Forty SPF-grade male Kunming mice were randomly divided into four groups: normal control group (NC), general liquor group (GC), fresh Polygonatum fermented liquor group (FPC), and nine-steam-nine-bask Polygonatum fermented liquor group (NPC). Each group was administered with sterile water, general liquor, fresh Polygonatum fermented liquor, and nine-steam-nine-bask Polygonatum fermented liquor, respectively, by gavage. The mice's liver, brain tissue, serum, and intestinal contents were collected. The indicators of oxidative stress in the liver, four blood lipid indicators, gamma-aminobutyric acid (GABA), and brain-derived neurotrophic factor (BDNF) levels in the brain tissue were measured, liver hematoxylin and eosin (HE) staining was performed, and the gut microbiota in the small intestine were analyzed using 16S rRNA second-generation sequencing technology. RESULTS Compared with the NC group, the NPC group showed significantly increased liver glutathione peroxidase (GSH-Px) content in mice (p < 0.05), reduced number of lipid droplets in the liver cells, and increased GABA and BDNF content in the brain tissues. The NPC group regulated lipid metabolism by lowering low-density lipoprotein cholesterol (LDL-C) and increasing high-density lipoprotein cholesterol (HDL-C) content in the mouse serum. Gut microbiota analysis showed significant changes in the gut microbiota of mice in the FPC and NPC groups, with increased richness and species diversity. These two groups increased the abundance of beneficial bacteria such as Lactobacillus, unclassified Muribaculaceae, unclassified Bacilli, and uncultured Bacteroidales bacterium while reducing the abundance of harmful bacteria such as Candidatus Arthromitus, and Staphylococcus, with a particularly significant reduction in Staphylococcus (p < 0.05). It is speculated that the two types of PFL may exert lipid-lowering and antioxidant effects by modulating the abundance of these dominant bacteria. Further studies showed that various environmental factors are closely related to the dominant gut bacteria. Malondialdehyde (MDA) was significantly negatively correlated with Lactobacillus and unclassified Bacilli, superoxide dismutase (SOD) was significantly negatively correlated with Staphylococcus (p < 0.01) and significantly negatively correlated with Candidatus Arthromitus (p < 0.05), and HDL-C was significantly negatively correlated with Staphylococcus and Facklamia (p < 0.05). DISCUSSION The two types of PFL chosen in this study may exert lipid-lowering and antioxidant effects by modulating the composition and function of the gut microbiota, providing guidance for the industrial application of Polygonatum.
Collapse
Affiliation(s)
- Xuan Yang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Leyao Fang
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Junxi Shen
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhoujin Tan
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wenhong Zeng
- Xinhua County Chiyou Distillery, Xinhua, Hunan, China
| | - Maijiao Peng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Nenqun Xiao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
7
|
Li Y, Guo Y, Niu F, Gao H, Wang Q, Xu M. Regulation of oxidative stress response and antioxidant modification in Corynebacterium glutamicum. World J Microbiol Biotechnol 2024; 40:267. [PMID: 39004689 DOI: 10.1007/s11274-024-04066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
As an efficient and safe industrial bacterium, Corynebacterium glutamicum has extensive application in amino acid production. However, it often faces oxidative stress induced by reactive oxygen species (ROS), leading to diminished production efficiency. To enhance the robustness of C. glutamicum, numerous studies have focused on elucidating its regulatory mechanisms under various stress conditions such as heat, acid, and sulfur stress. However, a comprehensive review of its defense mechanisms against oxidative stress is needed. This review offers an in-depth overview of the mechanisms C. glutamicum employs to manage oxidative stress. It covers both enzymatic and non-enzymatic systems, including antioxidant enzymes, regulatory protein families, sigma factors involved in transcription, and physiological redox reduction pathways. This review provides insights for advancing research on the antioxidant mechanisms of C. glutamicum and sheds light on its potential applications in industrial production.
Collapse
Affiliation(s)
- Yueshu Li
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Yuanyi Guo
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Fangyuan Niu
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Hui Gao
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Qing Wang
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
8
|
Yousfi S, Krier F, Deracinois B, Steels S, Coutte F, Frikha-Gargouri O. Characterization of Bacillus velezensis 32a metabolites and their synergistic bioactivity against crown gall disease. Microbiol Res 2024; 280:127569. [PMID: 38103466 DOI: 10.1016/j.micres.2023.127569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
Crown gall disease caused by Agrobacterium tumefaciens is considered to be the main bacterial threat of stone fruit plants in Mediterranean countries. In a previous study, Bacillus velezensis strain 32a was isolated from Tunisian rhizosphere soil and revealed high antagonistic potential against A. tumefaciens strains. In order to better characterize the antagonistic activity of this strain against this important plant pathogen, the production of secondary metabolites was analyzed using liquid chromatography coupled with mass spectrometry. The results revealed the production of different compounds identified as surfactins, fengycins, iturins and bacillibactin belonging to the lipopeptide group, three polyketides (macrolactins, oxydifficidin and bacillaenes), bacilysin and its chlorinated derivative; chlorotetaine. The involvement of lipopeptides in this antagonistic activity was ruled out by performing agar and broth dilution tests with pure molecules. Thus, the construction of B. velezensis 32a mutants defective in polyketides and bacilysin biosynthesis and their antagonistic activity was performed and compared to a set of derivative mutants of a comparable strain, B. velezensis GA1. The defective difficidin mutants (△dfnA and △dfnD) were unable to inhibit the growth of A. tumefaciens, indicating the high-level contribution of difficidin in the antagonism process. While the macrolactin deficient mutant (∆mlnA) slightly decreased the activity, suggesting a synergetic effect with difficidin. Remarkably, the mutant △dhbC only deficient in bacillibactin production showed significant reduction in its capacity to inhibit the growth of Agrobacterium.Taken collectively, our results showed the strong synergetic effect of difficidin and macrolactins and the significant implication of siderophore to manage crown gall disease.
Collapse
Affiliation(s)
- Sarra Yousfi
- Laboratory of Biopesticides, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia; Université de Lille, UMRt BioEcoAgro 1158-INRAE, Equipe Métabolites Secondaires d'Origine Microbienne, Institut Charles Viollette, F-59000 Lille, France
| | - François Krier
- Université de Lille, UMRt BioEcoAgro 1158-INRAE, Equipe Métabolites Secondaires d'Origine Microbienne, Institut Charles Viollette, F-59000 Lille, France
| | - Barbara Deracinois
- Université de Lille, UMRt BioEcoAgro 1158-INRAE, Equipe Métabolites Secondaires d'Origine Microbienne, Institut Charles Viollette, F-59000 Lille, France
| | - Sébastien Steels
- Université de Liège, UMRt BioEcoAgro 1158-INRAE, équipe Métabolites Secondaires d'Origine Microbienne, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, B-5030 Gembloux, Belgium
| | - François Coutte
- Université de Lille, UMRt BioEcoAgro 1158-INRAE, Equipe Métabolites Secondaires d'Origine Microbienne, Institut Charles Viollette, F-59000 Lille, France.
| | - Olfa Frikha-Gargouri
- Laboratory of Biopesticides, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
9
|
Pilz M, Cavelius P, Qoura F, Awad D, Brück T. Lipopeptides development in cosmetics and pharmaceutical applications: A comprehensive review. Biotechnol Adv 2023; 67:108210. [PMID: 37460047 DOI: 10.1016/j.biotechadv.2023.108210] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023]
Abstract
Lipopeptides are surface active, natural products of bacteria, fungi and green-blue algae origin, having diverse structures and functionalities. In analogy, a number of chemical synthesis techniques generated new designer lipopeptides with desirable features and functions. Lipopetides are self-assembly guided, supramolecular compounds which have the capacity of high-density presentation of the functional epitopes at the surface of the nanostructures. This feature contributes to their successful application in several industry sectors, including food, feed, personal care, and pharmaceutics. In this comprehensive review, the novel class of ribosomally synthesized lipopeptides is introduced alongside the more commonly occuring non-ribosomal lipopeptides. We highlight key representatives of the most researched as well as recently described lipopeptide families, with emphasis on structural features, self-assembly and associated functions. The common biological, chemical and hybrid production routes of lipopeptides, including prominent analogues and derivatives are also discussed. Furthermore, genetic engineering strategies aimed at increasing lipopeptide yields, diversity and biological activity are summarized and exemplified. With respect to application, this work mainly details the potential of lipopeptides in personal care and cosmetics industry as cleansing agents, moisturizer, anti-aging/anti-wrinkling, skin whitening and preservative agents as well as the pharmaceutical industry as anitimicrobial agents, vaccines, immunotherapy, and cancer drugs. Given that this review addresses human applications, we conclude on the topic of safety of lipopeptide formulations and their sustainable production.
Collapse
Affiliation(s)
- Melania Pilz
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Philipp Cavelius
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Farah Qoura
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Dania Awad
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany.
| | - Thomas Brück
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany.
| |
Collapse
|
10
|
Kumari K, Behera HT, Nayak PP, Sinha A, Nandi A, Ghosh A, Saha U, Suar M, Panda PK, Verma SK, Raina V. Amelioration of lipopeptide biosurfactants for enhanced antibacterial and biocompatibility through molecular antioxidant property by methoxy and carboxyl moieties. Biomed Pharmacother 2023; 161:114493. [PMID: 36906974 DOI: 10.1016/j.biopha.2023.114493] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Biosurfactants having surface-active biomolecules have been the cynosure in environment research due to their vast application. However, the lack of information about their low-cost production and detailed mechanistic biocompatibility limits the applicability. The study explores techniques for the production and design of low-cost, biodegradable, and non-toxic biosurfactants from Brevibacterium casei strain LS14 and excavates the mechanistic details of their biomedical properties like antibacterial effects and biocompatibility. Taguchi's design of experiment was used to optimize for enhancing biosurfactant production by optimal factor combinations like Waste glycerol (1%v/v), peptone (1%w/v), NaCl 0.4% (w/v), and pH 6. Under optimal conditions, the purified biosurfactant reduced the surface tension to 35 mN/m from 72.8 mN/m (MSM) and a critical micelle concentration of 25 mg/ml was achieved. Spectroscopic analyses of the purified biosurfactant using Nuclear Magnetic Resonance suggested it as a lipopeptide biosurfactant. The evaluation of mechanistic antibacterial, antiradical, antiproliferative, and cellular effects indicated the efficient antibacterial activity (against Pseudomonas aeruginosa) of biosurfactants due to free radical scavenging activity and oxidative stress. Moreover, the cellular cytotoxicity was estimated by MTT and other cellular assays revealing the phenomenon as the dose-dependent induction of apoptosis due to free radical scavenging with an LC50 of 55.6 ± 2.3 mg/ml.
Collapse
Affiliation(s)
- Khushbu Kumari
- School of Biotechnology, KIIT-DU, Bhubaneswar 751024, India
| | | | | | - Adrija Sinha
- School of Biotechnology, KIIT-DU, Bhubaneswar 751024, India
| | - Aditya Nandi
- School of Biotechnology, KIIT-DU, Bhubaneswar 751024, India
| | - Aishee Ghosh
- School of Biotechnology, KIIT-DU, Bhubaneswar 751024, India
| | - Utsa Saha
- School of Biotechnology, KIIT-DU, Bhubaneswar 751024, India
| | | | - Pritam Kumar Panda
- Department of Physics and Astronomy (Materials Theory), Uppsala University, 75121, Sweden.
| | - Suresh K Verma
- School of Biotechnology, KIIT-DU, Bhubaneswar 751024, India.
| | - Vishakha Raina
- School of Biotechnology, KIIT-DU, Bhubaneswar 751024, India.
| |
Collapse
|
11
|
Vahidinasab M, Adiek I, Hosseini B, Akintayo SO, Abrishamchi B, Pfannstiel J, Henkel M, Lilge L, Voegele RT, Hausmann R. Characterization of Bacillus velezensis UTB96, Demonstrating Improved Lipopeptide Production Compared to the Strain B. velezensis FZB42. Microorganisms 2022; 10:2225. [PMID: 36363818 PMCID: PMC9693074 DOI: 10.3390/microorganisms10112225] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 08/24/2023] Open
Abstract
Bacillus strains can produce various lipopeptides, known for their antifungal properties. This makes them attractive metabolites for applications in agriculture. Therefore, identification of productive wild-type strains is essential for the development of biopesticides. Bacillus velezensis FZB42 is a well-established strain for biocontrol of plant pathogens in agriculture. Here, we characterized an alternative strain, B. velezensis UTB96, that can produce higher amounts of all three major lipopeptide families, namely surfactin, fengycin, and iturin. UTB96 produces iturin A. Furthermore, UTB96 showed superior antifungal activity towards the soybean fungal pathogen Diaporthe longicolla compared to FZB42. Moreover, the additional provision of different amino acids for lipopeptide production in UTB96 was investigated. Lysine and alanine had stimulatory effects on the production of all three lipopeptide families, while supplementation of leucine, valine and isoleucine decreased the lipopeptide bioproduction. Using a 45-litre bioreactor system for upscaling in batch culture, lipopeptide titers of about 140 mg/L surfactin, 620 mg/L iturin A, and 45 mg/L fengycin were achieved. In conclusion, it becomes clear that B. velezensis UTB96 is a promising strain for further research application in the field of agricultural biological controls of fungal diseases.
Collapse
Affiliation(s)
- Maliheh Vahidinasab
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany
| | - Isabel Adiek
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany
| | - Behnoush Hosseini
- Department of Phytopathology (360a), Institute of Phytomedicine, Faculty of Agricultural Sciences, University of Hohenheim, Otto-Sander-Str. 5, 70599 Stuttgart, Germany
| | - Stephen Olusanmi Akintayo
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany
| | - Bahar Abrishamchi
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany
| | - Jens Pfannstiel
- Core Facility Hohenheim, Mass Spectrometry Unit, University of Hohenheim, August-von-Hartmann-Str. 3, 70599 Stuttgart, Germany
| | - Marius Henkel
- Cellular Agriculture, TUM School of Life Science, Technical University of Munich, Gregor-Mendel-Str. 4, 85354 Freising, Germany
| | - Lars Lilge
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany
| | - Ralf T. Voegele
- Department of Phytopathology (360a), Institute of Phytomedicine, Faculty of Agricultural Sciences, University of Hohenheim, Otto-Sander-Str. 5, 70599 Stuttgart, Germany
| | - Rudolf Hausmann
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany
| |
Collapse
|