1
|
Wang J, Miao W, Li S, Yang M, Gao X. Effect of Nitrogen Fertilizer on the Rhizosphere and Endosphere Bacterial Communities of Rice at Different Growth Stages. Int J Mol Sci 2024; 25:13702. [PMID: 39769464 PMCID: PMC11678815 DOI: 10.3390/ijms252413702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
This study aimed to investigate the impact of nitrogen (N) fertilizer on bacterial community composition and diversity in the rhizosphere and endosphere of rice at different growth stages. Two treatments, N0 (no N application) and N1 (270 kg N ha-1), were implemented, with samples collected during the jointing, tasseling, and maturity stages. High-throughput sequencing was used to analyze the structure and composition of bacterial communities associated with Huaidao No. 5 (japonica conventional rice). The findings indicated that root zone location was the primary factor influencing the diversity and composition of rice root-associated bacterial communities. Further analysis revealed that nitrogen fertilizer primarily influenced rhizosphere bacterial diversity, while endosphere bacterial diversity was more significantly affected by growth stages. Rice recruited distinct beneficial bacteria in the rhizosphere and endosphere depending on the growth stage. Additionally, the relative abundance of functional genes related to nitrogen metabolism in root-associated bacteria was not significantly influenced by nitrogen application at 270 kg N ha-1. These findings offer valuable insights into how nitrogen fertilizer affects plant root bacterial communities across different growth stages.
Collapse
Affiliation(s)
- Jinjun Wang
- Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; (W.M.); (S.L.); (M.Y.); (X.G.)
| | - Wang Miao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; (W.M.); (S.L.); (M.Y.); (X.G.)
| | - Shiyu Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; (W.M.); (S.L.); (M.Y.); (X.G.)
| | - Mingliang Yang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; (W.M.); (S.L.); (M.Y.); (X.G.)
| | - Xinru Gao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; (W.M.); (S.L.); (M.Y.); (X.G.)
| |
Collapse
|
2
|
Li K, Lin H, Han M, Yang L. Soil metagenomics reveals the effect of nitrogen on soil microbial communities and nitrogen-cycle functional genes in the rhizosphere of Panax ginseng. FRONTIERS IN PLANT SCIENCE 2024; 15:1411073. [PMID: 39170784 PMCID: PMC11335670 DOI: 10.3389/fpls.2024.1411073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024]
Abstract
Nitrogen (N) is the primary essential nutrient for ginseng growth, and a reasonable nitrogen application strategy is vital for maintaining the stability of soil microbial functional communities. However, how microbial-mediated functional genes involved in nitrogen cycling in the ginseng rhizosphere respond to nitrogen addition is largely unknown. In this study, metagenomic technology was used to study the effects of different nitrogen additions (N0: 0, N1: 20, N2: 40 N g/m2) on the microbial community and functional nitrogen cycling genes in the rhizosphere soil of ginseng, and soil properties related to the observed changes were evaluated. The results showed that N1 significantly increased the soil nutrient content compared to N0, and the N1 ginseng yield was the highest (29.90% and 38.05% higher than of N0 and N2, respectively). N2 significantly decreased the soil NO3 -N content (17.18 mg/kg lower than N0) and pH. This resulted in a decrease in the diversity of soil microorganisms, a decrease in beneficial bacteria, an increase in the number of pathogenic microorganisms, and an significant increase in the total abundance of denitrification, assimilatory nitrogen reduction, and dissimilatory nitrogen reduction genes, as well as the abundance of nxrA and napA genes (17.70% and 65.25% higher than N0, respectively), which are functional genes involved in nitrification that promote the soil nitrogen cycling process, and reduce the yield of ginseng. The results of the correlation analysis showed that pH was correlated with changes in the soil microbial community, and the contents of soil total nitrogen (TN), ammonium nitrogen (NH4 +-N), and alkaline-hydrolyzed nitrogen (AHN) were the main driving factors affecting the changes in nitrogen cycling functional genes in the rhizosphere soil of ginseng. In summary, nitrogen addition affects ginseng yield through changes in soil chemistry, nitrogen cycling processes, and functional microorganisms.
Collapse
Affiliation(s)
| | - Hongmei Lin
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
| | - Mei Han
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
| | | |
Collapse
|
3
|
Paes da Costa D, das Graças Espíndola da Silva T, Sérgio Ferreira Araujo A, Prudêncio de Araujo Pereira A, William Mendes L, Dos Santos Borges W, Felix da França R, Alberto Fragoso de Souza C, Alves da Silva B, Oliveira Silva R, Valente de Medeiros E. Soil fertility impact on recruitment and diversity of the soil microbiome in sub-humid tropical pastures in Northeastern Brazil. Sci Rep 2024; 14:3919. [PMID: 38365962 PMCID: PMC10873301 DOI: 10.1038/s41598-024-54221-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/09/2024] [Indexed: 02/18/2024] Open
Abstract
Soil fertility is key point to pastures systems and drives the microbial communities and their functionality. Therefore, an understanding of the interaction between soil fertility and microbial communities can increase our ability to manage pasturelands and maintain their soil functioning and productivity. This study probed the influence of soil fertility on microbial communities in tropical pastures in Brazil. Soil samples, gathered from the top 20 cm of twelve distinct areas with diverse fertility levels, were analyzed via 16S rRNA sequencing. The soils were subsequently classified into two categories, namely high fertility (HF) and low fertility (LF), using the K-Means clustering. The random forest analysis revealed that high fertility (HF) soils had more bacterial diversity, predominantly Proteobacteria, Nitrospira, Chloroflexi, and Bacteroidetes, while Acidobacteria increased in low fertility (LF) soils. High fertility (HF) soils exhibited more complex network interactions and an enrichment of nitrogen-cycling bacterial groups. Additionally, functional annotation based on 16S rRNA varied between clusters. Microbial groups in HF soil demonstrated enhanced functions such as nitrate reduction, aerobic ammonia oxidation, and aromatic compound degradation. In contrast, in the LF soil, the predominant processes were ureolysis, cellulolysis, methanol oxidation, and methanotrophy. Our findings expand our knowledge about how soil fertility drives bacterial communities in pastures.
Collapse
Affiliation(s)
- Diogo Paes da Costa
- Microbiology and Enzimology Lab., Federal University of Agreste Pernambuco, Garanhuns, PE, 55292-270, Brazil.
| | | | | | | | - Lucas William Mendes
- Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba, SP, 13400-970, Brazil
| | - Wisraiane Dos Santos Borges
- Microbiology and Enzimology Lab., Federal University of Agreste Pernambuco, Garanhuns, PE, 55292-270, Brazil
| | - Rafaela Felix da França
- Microbiology and Enzimology Lab., Federal University of Agreste Pernambuco, Garanhuns, PE, 55292-270, Brazil
| | | | - Bruno Alves da Silva
- Microbiology and Enzimology Lab., Federal University of Agreste Pernambuco, Garanhuns, PE, 55292-270, Brazil
| | - Renata Oliveira Silva
- Microbiology and Enzimology Lab., Federal University of Agreste Pernambuco, Garanhuns, PE, 55292-270, Brazil
| | - Erika Valente de Medeiros
- Microbiology and Enzimology Lab., Federal University of Agreste Pernambuco, Garanhuns, PE, 55292-270, Brazil
| |
Collapse
|