1
|
Wang T, Sui J, Zhou Y, Wang L, Yang J, Chen F, Cui X, Yang Y, Zhang W. Difenoconazole Degradation by Novel Microbial Consortium TA01: Metabolic Pathway and Microbial Community Analysis. Int J Mol Sci 2025; 26:3142. [PMID: 40243894 PMCID: PMC11988721 DOI: 10.3390/ijms26073142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 03/22/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Difenoconazole, a broad-spectrum systemic fungicide, can effectively prevent and control plant diseases such as rice blast, leaf spot, and black spot caused by Colletotrichum godetiae, Alternaria alternata, and Neopestalotiopsis rosae. However, its residual accumulation in the environment may pose potential toxicity risks to non-target organisms. In this study, a highly efficient DIF-degrading microbial consortium TA01 was enriched from long-term pesticide-contaminated soil by a laboratory-based adaptive evolution strategy. The microbial consortium TA01 was able to degrade 83.87% of 50 mg/L of DIF within 3 days. In addition, three intermediate metabolites were identified using HPLC-MS/MS, and the results indicated that the degradation of DIF by microbial consortium TA01 may involve catalytic reactions such as hydrolysis, dehalogenation, and hydroxylation. High-throughput sequencing results showed that Pantoea, Serratia, Ochrobactrum, and Bacillus were the dominant microbial members involved in the degradation process. Finally, bioremediation capacity experiments showed that inoculation with microbial consortium TA01 was able to accelerate the degradation of DIF in the water-sediment system. The findings of this study not only enrich the microbial resources available for DIF degradation but also offer new potential strategies for in situ remediation of DIF contamination.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ye Yang
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (T.W.); (J.S.); (Y.Z.); (L.W.); (J.Y.); (F.C.); (X.C.)
| | - Wenping Zhang
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (T.W.); (J.S.); (Y.Z.); (L.W.); (J.Y.); (F.C.); (X.C.)
| |
Collapse
|
2
|
Ruan R, Huang K, Luo H, Zhang C, Xi D, Pei J, Liu H. Occurrence and Characterization of Sclerotinia sclerotiorum Causing Fruit Rot on Sweet Cherry in Southern China. PLANTS (BASEL, SWITZERLAND) 2023; 12:4165. [PMID: 38140492 PMCID: PMC10747181 DOI: 10.3390/plants12244165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
Sweet cherry (Prunus avium L.) is widely planted in northern China due to its high economic value, and its cultivation has gradually spread south to warm regions. However, fruit rot, observed on the young fruits, poses a considerable threat to the development of sweet cherry. To determine the causal agent, morphological observation, molecular identification, and pathogenicity tests were performed on isolates obtained from diseased fruits. As a result, Sclerotinia sclerotiorum was identified as the pathogen. Pathogenicity tests on different sweet cherry cultivars indicated that 'Summit' was highly sensitive to S. sclerotiorum, whereas 'Hongmi' showed significant resistance. Besides sweet cherry, S. sclerotiorum could also infect other vegetable crops we tested, such as cowpea, soybean, tomato, and chili. Fungicide sensitivity and efficacy assays showed that both fludioxonil and pyraclostrobin can effectively inhibit the mycelial growth of S. sclerotiorum and decrease disease incidences on the young fruits of sweet cherry. Furthermore, genome sequencing resulted in a 37.8 Mb assembly of S. sclerotiorum strain ScSs1, showing abundant SNPs, InDels, and SVs with the genome of S. sclerotiorum reference strain 1980 UF-70. The above results provide an important basis for controlling the fruit rot of sweet cherry caused by S. sclerotiorum in China.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hui Liu
- Institute of Horticulture, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China; (R.R.)
| |
Collapse
|
3
|
Gonçalves AC, Falcão A, Alves G, Silva LR, Flores-Félix JD. Diversity of Culture Microorganisms from Portuguese Sweet Cherries. Life (Basel) 2023; 13:2323. [PMID: 38137924 PMCID: PMC10744636 DOI: 10.3390/life13122323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Consumers today seek safe functional foods with proven health-promoting properties. Current evidence shows that a healthy diet can effectively alleviate oxidative stress levels and reduce inflammatory markers, thereby preventing the occurrence of many types of cancer, hypertension, and cardiovascular and neurological pathologies. Nevertheless, as fruits and vegetables are mainly consumed fresh, they can serve as vectors for the transmission of pathogenic microorganisms associated with various disease outbreaks. As a result, there has been a surge in interest in the microbiome of fruits and vegetables. Therefore, given the growing interest in sweet cherries, and since their microbial communities have been largely ignored, the primary purpose of this study is to investigate their culturome at various maturity stages for the first time. A total of 55 microorganisms were isolated from sweet cherry fruit, comprising 23 bacteria and 32 fungi species. Subsequently, the selected isolates were molecularly identified by amplifying the 16S rRNA gene and ITS region. Furthermore, it was observed that the communities became more diverse as the fruit matured. The most abundant taxa included Pseudomonas and Ralstonia among the bacteria, and Metschnikowia, Aureobasidium, and Hanseniaspora among the fungi.
Collapse
Affiliation(s)
- Ana C. Gonçalves
- CICS–UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (G.A.); (L.R.S.)
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Amílcar Falcão
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal;
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Gilberto Alves
- CICS–UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (G.A.); (L.R.S.)
| | - Luís R. Silva
- CICS–UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (G.A.); (L.R.S.)
- CPIRN-UDI/IPG—Centro de Potencial e Inovação em Recursos Naturais, Unidade de Investigação para o Desenvolvimento do Interior do Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Pólo II—Pinhal de Marrocos, University of Coimbra, 3030-790 Coimbra, Portugal
| | - José D. Flores-Félix
- CICS–UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (G.A.); (L.R.S.)
- Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
4
|
Fan R, Liu Y, Bin Y, Huang J, Yi B, Tang X, Li Y, Cai Y, Yang Z, Yang M, Song J, Pan Q, Liu Z, Ghani MI, Hu X, Chen X. Identification of Colletotrichum aenigma as the new causal agent of leaf blight disease on Aucuba japonica Thunb., and screenings of effective fungicides for its sustainable management. Front Microbiol 2023; 14:1222844. [PMID: 37692385 PMCID: PMC10483284 DOI: 10.3389/fmicb.2023.1222844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023] Open
Abstract
Aucuba japonica Thunb is an evergreen woody ornamental plant with significant economic and ecological values. It also produces aucubin, showing a variety of biological activities. It is widely planted in the southwest region of China, including karst landscape areas in Guizhou Province. In January 2022, a serious leaf blight disease was observed on the leaves of A. japonica in the outdoor gardens of Guizhou University, Guiyang, Guizhou, China. The causal agent was identified as Colletotrichum aenigma through amplification and sequencing of the internal transcribed spacer (ITS) region, translation of the chitin synthase (CHS) and actin (ACT) genes, and morphological characterizations. Koch's postulates were confirmed by its pathogenicity on healthy leaves, including re-isolation and identification. To our knowledge, this is the first report of C. aenigma causing leaf blight on A. japonica worldwide. To identify pathogen characteristics that could be utilized for future disease management, the effects of temperature and light on mycelial growth, conidia production, and conidial germination, and the effects of humidity on conidial germination were studied. Optimal temperatures for mycelial growth of C. aenigma BY827 were 25-30°C, while 15°C and 35°C were favorable for conidia production. Concurrently, alternating 10-h light and 14-h dark, proved to be beneficial for mycelial growth and conidial germination. Additionally, conidial germination was enhanced at 90% humidity. In vitro screenings of ten chemical pesticides to assess their efficacy in suppressing C. aenigma representative strain BY827. Among them, difenoconazole showed the best inhibition rate, with an EC50 (concentration for 50% of maximal effect) value of 0.0148 μg/ml. Subsequently, field experiment results showed that difenoconazole had the highest control efficiency on A. japonica leaf blight (the decreasing rate of disease incidence and decreasing rate of disease index were 44.60 and 47.75%, respectively). Interestingly, we discovered that C. aenigma BY827 may develop resistance to mancozeb, which is not reported yet among Colletotrichum spp. strains. In conclusion, our study provided new insights into the causal agent of A. japonica leaf blight, and the effective fungicides evaluated provided an important basis and potential resource for the sustainable control of A. japonica leaf blight caused by C. aenigma in the field.
Collapse
Affiliation(s)
- Ruidong Fan
- College of Agriculture, College of Life Sciences, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Yanjiang Liu
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
- School of Ecology and Environment, Tibet University, Lhasa, China
| | - Yalan Bin
- College of Agriculture, College of Life Sciences, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Jingyi Huang
- College of Agriculture, College of Life Sciences, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Benlin Yi
- College of Agriculture, College of Life Sciences, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Xiaoli Tang
- College of Agriculture, College of Life Sciences, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Yingxue Li
- College of Agriculture, College of Life Sciences, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Yu Cai
- College of Agriculture, College of Life Sciences, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Ziyan Yang
- College of Agriculture, College of Life Sciences, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Mingxuan Yang
- College of Agriculture, College of Life Sciences, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Jiahao Song
- College of Agriculture, College of Life Sciences, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Qi Pan
- College of Agriculture, College of Life Sciences, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Zengliang Liu
- Microbiology Research Institute, Guangxi Agricultural Science Academy, Nanning, China
| | - Muhammad Imran Ghani
- College of Agriculture, College of Life Sciences, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Xiaojing Hu
- College of Agriculture, College of Life Sciences, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Xiaoyulong Chen
- College of Agriculture, College of Life Sciences, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China Association of Agricultural Science Societies, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
- School of Ecology and Environment, Tibet University, Lhasa, China
| |
Collapse
|