1
|
Egbewale SO, Kumar A, Mokoena MP, Olaniran AO. Purification, characterization and three-dimensional structure prediction of multicopper oxidase Laccases from Trichoderma lixii FLU1 and Talaromyces pinophilus FLU12. Sci Rep 2024; 14:13371. [PMID: 38862560 PMCID: PMC11167041 DOI: 10.1038/s41598-024-63959-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
Broad-spectrum biocatalysts enzymes, Laccases, have been implicated in the complete degradation of harmful pollutants into less-toxic compounds. In this study, two extracellularly produced Laccases were purified to homogeneity from two different Ascomycetes spp. Trichoderma lixii FLU1 (TlFLU1) and Talaromyces pinophilus FLU12 (TpFLU12). The purified enzymes are monomeric units, with a molecular mass of 44 kDa and 68.7 kDa for TlFLU1 and TpFLU12, respectively, on SDS-PAGE and zymogram. It reveals distinct properties beyond classic protein absorption at 270-280 nm, with TlFLU1's peak at 270 nm aligning with this typical range of type II Cu site (white Laccase), while TpFLU12's unique 600 nm peak signifies a type I Cu2+ site (blue Laccase), highlighting the diverse spectral fingerprints within the Laccase family. The Km and kcat values revealed that ABTS is the most suitable substrate as compared to 2,6-dimethoxyphenol, caffeic acid and guaiacol for both Laccases. The bioinformatics analysis revealed critical His, Ile, and Arg residues for copper binding at active sites, deviating from the traditional two His and a Cys motif in some Laccases. The predicted biological functions of the Laccases include oxidation-reduction, lignin metabolism, cellular metal ion homeostasis, phenylpropanoid catabolism, aromatic compound metabolism, cellulose metabolism, and biological adhesion. Additionally, investigation of degradation of polycyclic aromatic hydrocarbons (PAHs) by purified Laccases show significant reductions in residual concentrations of fluoranthene and anthracene after a 96-h incubation period. TlFLU1 Laccase achieved 39.0% and 44.9% transformation of fluoranthene and anthracene, respectively, while TpFLU12 Laccase achieved 47.2% and 50.0% transformation, respectively. The enzyme structure-function relationship study provided insights into the catalytic mechanism of these Laccases for possible biotechnological and industrial applications.
Collapse
Affiliation(s)
- Samson O Egbewale
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Durban, 4001, South Africa
| | - Ajit Kumar
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Durban, 4001, South Africa
| | - Mduduzi P Mokoena
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Durban, 4001, South Africa
- Department of Pathology, School of Medicine, University of Limpopo, Private Bag X1106, Sovenga, 0727, South Africa
| | - Ademola O Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Durban, 4001, South Africa.
| |
Collapse
|
2
|
Pandey S, Gupta S. Exploring laccase: a sustainable enzymatic solution for the paper recycling domain. Arch Microbiol 2024; 206:211. [PMID: 38602547 DOI: 10.1007/s00203-024-03927-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
The global advocacy of resource conservation and waste management emphasizes the significance of sustainable practices, particularly in sectors such as paper manufacturing and recycling. Currently, conventional chemical methods are predominant for paper production, necessitating the use of substantial amount of toxic chemicals. This chemical-intensive approach compromises the recycled fiber quality, generates hazardous effluent causing serious ecological threats which triggers regulatory complexities for the mills. To address these challenges modern research suggests adopting sustainable eco-friendly practices such as employing enzymes. This review aims to explore the applicability of 'laccase' enzyme for paper recycling, investigating its properties and contribution to improved recycling practices. By delving into the potential application of laccase integration into the papermaking process, this article sheds light on the limitations inherent in traditional methods surmounted within both research and translational landscapes. Culture and process optimization studies, supporting the technological improvements and the future prospects have been documented.
Collapse
Affiliation(s)
- Sheetal Pandey
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Newai, Rajasthan, 304022, India
| | - Sarika Gupta
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Newai, Rajasthan, 304022, India.
| |
Collapse
|
3
|
Gao L, Feng X, Zhang Y, Guo H, Mu X, Huang Z, Urynowicz M. Methane production from the biodegradation of lignite with different sizes by mixed fungi-methanogen microflora. FEMS Microbiol Lett 2024; 371:fnae037. [PMID: 38849297 DOI: 10.1093/femsle/fnae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/09/2024] [Accepted: 06/06/2024] [Indexed: 06/09/2024] Open
Abstract
Biogenic coalbed methane (CBM) is a developing clean energy source. However, it is unclear how the mechanisms of bio-methane production with different sizes of coal. In this work, pulverized coal (PC) and lump coal (LC) were used for methane production by mixed fungi-methanogen microflora. The lower methane production from LC was observed. The aromatic carbon of coal was degraded slightly by 2.17% in LC, while 11.28% in PC. It is attributed to the proportion of lignin-degrading fungi, especially Penicillium, which was reached 67.57% in PC on the 7th day, higher than that of 11.38% in LC. The results suggested that the limited interaction area in LC led to microorganisms hardly utilize aromatics. It also led the accumulation of aromatic organics in the fermentation broth in PC. Increasing the reaction area of coal and facilitating the conversion of aromatic carbon are suggested means to increase methane production in situ.
Collapse
Affiliation(s)
- Longzhen Gao
- Department of Safety Engineering, College of Safety and Emergency Management and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of In-situ Property-improving Mining of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiao Feng
- Department of Safety Engineering, College of Safety and Emergency Management and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of In-situ Property-improving Mining of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yixuan Zhang
- Department of Safety Engineering, College of Safety and Emergency Management and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of In-situ Property-improving Mining of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Hongguang Guo
- Department of Safety Engineering, College of Safety and Emergency Management and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of In-situ Property-improving Mining of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaogang Mu
- Department of Safety Engineering, College of Safety and Emergency Management and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zaixing Huang
- Department of Biological Engineering, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
- Department of Civil & Architectural Engineering, University of Wyoming, Laramie, WY 82071, United States
| | - Michael Urynowicz
- Department of Civil & Architectural Engineering, University of Wyoming, Laramie, WY 82071, United States
| |
Collapse
|
4
|
Zhang LB, Yang WWJ, Qiu TT. Genome-wide study of Cerrena unicolor 87613 laccase gene family and their mode prediction in association with substrate oxidation. BMC Genomics 2023; 24:504. [PMID: 37649000 PMCID: PMC10466755 DOI: 10.1186/s12864-023-09606-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/19/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Laccases are green biocatalysts with wide industrial applications. The study of efficient and specific laccase producers remains a priority. Cerrena species have been shown to be promising basidiomycete candidates for laccase production. Although two sets of Cerrena genome data have been publicly published, no comprehensive bioinformatics study of laccase gene family in C. unicolor has been reported, particularly concerning the analysis of their three-dimensional (3D) structures and molecular docking to substrates, like ABTS and aflatoxin B1 (AFB1). RESULTS In this study, we conducted a comprehensive genome-wide analysis of laccase gene family in C. unicolor 87613. We identified eighteen laccase genes (CuLacs) and classified them into three clades using phylogenetic analysis. We characterized these laccases, including their location in contig 5,6,9,12,15,19,26,27, gene structures of different exon-intron arrangements, molecular weight ranging from 47.89 to 141.41 kDa, acidic pI value, 5-15 conserved protein motifs, signaling peptide of extracellular secretion (harbored by 13 CuLacs) and others. In addition, the analysis of cis-acting element in laccase promoters indicated that the transcription response of CuLac gene family was regulatable and complex under different environmental cues. Furthermore, analysis of transcription pattern revealed that CuLac8, 12 and CuLac2, 13 were the predominant laccases in response to copper ions or oxidative stress, respectively. Finally, we focused on the 3D structure analysis of CuLac proteins. Seven laccases with extra transmembrane domains or special sequences were particularly interesting. Predicted structures of each CuLac protein with or without these extra sequences showed altered interacting amino acid residues and binding sites, leading to varied affinities to both ABTS and AFB1. As far as we know, it is the first time to discuss the influence of the extra sequence on laccase's affinity to substrates. CONCLUSIONS Our findings provide robust genetic data for a better understanding of the laccase gene family in C. unicolor 87613, and create a foundation for the molecular redesign of CuLac proteins to enhance their industrial applications.
Collapse
Affiliation(s)
- Long-Bin Zhang
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China.
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China.
| | - Wu-Wei-Jie Yang
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China
| | - Ting-Ting Qiu
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China
| |
Collapse
|
5
|
Li G, Wang Y, Zhu P, Zhao G, Liu C, Zhao H. Functional Characterization of Laccase Isozyme (PoLcc1) from the Edible Mushroom Pleurotus ostreatus Involved in Lignin Degradation in Cotton Straw. Int J Mol Sci 2022; 23:13545. [PMID: 36362331 PMCID: PMC9658089 DOI: 10.3390/ijms232113545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Fungal laccases play important roles in the degradation of lignocellulose. In this study, the laccase producing cotton straw medium for Pleurotus ostreatus was optimized by single-factor and orthogonal experiments, and to investigate the role of Lacc1 gene, one of the laccase-encoding genes, in the degradation of cotton straw lignin, an overexpression strain of Lacc1 gene was constructed, which was analyzed for the characteristics of lignin degradation. The results demonstrated that the culture conditions with the highest lignin degradation efficiency of the P. ostreatus were the cotton straw particle size of 0.75 mm, a solid-liquid ratio of 1:3 and containing 0.25 g/L of Tween in the medium, as well as an incubation temperature of 26 °C. Two overexpression strains (OE L1-1 and OE L1-4) of Lacc1 gene were obtained, and the gene expression increased 12.08- and 33.04-fold, respectively. The results of 1H-NMR and FTIR analyses of significant changes in lignin structure revealed that Lacc1 gene accelerated the degradation of lignin G-units and involved in the cleavage of β-O-4 linkages and the demethylation of lignin units. These findings will help to improve the efficiency of biodelignification and expand our understanding of its mechanism.
Collapse
Affiliation(s)
- Guoqing Li
- State Key Laboratory of Horticultural Crop Germplasm Resources Creation and Utilization of Ministry of Agriculture and Rural Affairs, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- College of Life Science, Anhui Agricultural University, Hefei 230036, China
- Provincial Resource Database of Wood Rot Edible Mushrooms in Anhui Province, Hefei 230031, China
| | - Yahui Wang
- State Key Laboratory of Horticultural Crop Germplasm Resources Creation and Utilization of Ministry of Agriculture and Rural Affairs, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Peilei Zhu
- State Key Laboratory of Horticultural Crop Germplasm Resources Creation and Utilization of Ministry of Agriculture and Rural Affairs, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Guiyun Zhao
- State Key Laboratory of Horticultural Crop Germplasm Resources Creation and Utilization of Ministry of Agriculture and Rural Affairs, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Caiyu Liu
- State Key Laboratory of Horticultural Crop Germplasm Resources Creation and Utilization of Ministry of Agriculture and Rural Affairs, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Hongyuan Zhao
- State Key Laboratory of Horticultural Crop Germplasm Resources Creation and Utilization of Ministry of Agriculture and Rural Affairs, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| |
Collapse
|