1
|
Pereira BB, Marrafa M, Cruz C, Rodrigues L, Nunes F, Monteiro S, Santos R, Carneiro RN, Neto C, Aguilar J, Ferreiro NR, Passanha M, Candeias G, Fernandes A, Paixão P, Chasqueira MJ. Antimicrobial Resistance Genes in Legionella from Artificial Water Systems: Findings from a Two-Year Study. Antibiotics (Basel) 2024; 13:1121. [PMID: 39766511 PMCID: PMC11672855 DOI: 10.3390/antibiotics13121121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/07/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Legionella species are the causative agent of Legionnaires' disease and, as ubiquitous waterborne bacteria, are prone to antimicrobial resistance gene (ARG) acquisition and dissemination due to the antimicrobial contamination of natural environments. Given the potential health risks associated with ARGs, it is crucial to assess their presence in the Legionella population. METHODS The ARGs lpeAB and tet56 were detected in 348 samples, isolates, and DNA extracts using conventional PCR. In a subset of lpeAB-positive isolates, azithromycin (AZT) MIC values were obtained using the EUCAST protocol and LpeAB activity was evaluated through an efflux pump inhibition assay. RESULTS The lpeAB gene was found in 19% (66/348) of samples, with higher detection rates in the L. pneumophila and L. pneumophila sg1 subgroups, at 30% and 41%, respectively. A positive association between lpeAB and L. pneumophila sg1 was found. The MIC values of the lpeAB-positive isolates ranged from 0.064 to 2 mg/L. LpeAB inhibition resulted in 2- and 4-fold MIC reductions in 10 of the 13 isolates analyzed. One sample each of L. longbeacheae and L. bozemanae was found to possess the tet56 gene. CONCLUSIONS The lpeAB gene is predominant in L. pneumophila sg1. A few isolates with the lpeAB gene exhibited MIC values below the EUCAST tentative highest MIC values for wild-type isolates. Expanding ARG monitoring in Legionella is essential to assess the public health risk of Legionnaires' disease.
Collapse
Affiliation(s)
- Bernardo Beirão Pereira
- Laboratory of Microbiology, Nova Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (B.B.P.)
| | - Mário Marrafa
- Laboratory of Microbiology, Nova Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (B.B.P.)
| | - Carolina Cruz
- Laboratory of Microbiology, Nova Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (B.B.P.)
| | - Lúcia Rodrigues
- Laboratory of Microbiology, Nova Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (B.B.P.)
| | - Filipa Nunes
- Laboratório de Análises de Água, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Silvia Monteiro
- Laboratório de Análises de Água, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Civil Engineering Reasearch and Innovation for Sustainability, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Ricardo Santos
- Laboratório de Análises de Água, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Civil Engineering Reasearch and Innovation for Sustainability, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Rui Neves Carneiro
- Direção de Laboratórios, Empresa Portuguesa das Águas Livres, 1250-144 Lisboa, Portugal
| | - Célia Neto
- Direção de Laboratórios, Empresa Portuguesa das Águas Livres, 1250-144 Lisboa, Portugal
| | - Joana Aguilar
- Direção de Laboratórios, Empresa Portuguesa das Águas Livres, 1250-144 Lisboa, Portugal
| | | | - Margarida Passanha
- Laboratório Regional de Saúde Pública do Alentejo, 7000-811 Évora, Portugal
| | - Gonçalo Candeias
- Laboratório Regional de Saúde Pública do Alentejo, 7000-811 Évora, Portugal
| | - Aida Fernandes
- Laboratório Regional de Saúde Pública Dra. Laura Ayres, 8135-014 Almancil, Portugal
| | - Paulo Paixão
- Laboratory of Microbiology, Nova Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (B.B.P.)
- Comprehensive Health Reasearch Center, Nova Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Maria Jesus Chasqueira
- Laboratory of Microbiology, Nova Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (B.B.P.)
- Comprehensive Health Reasearch Center, Nova Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| |
Collapse
|
2
|
Minetti C, Barton R, Farley C, Spiller OB, Rodrigues R, Gonçalves P. Antimicrobial susceptibility testing reveals reduced susceptibility to azithromycin and other antibiotics in Legionella pneumophila serogroup 1 isolates from Portugal. Eur J Clin Microbiol Infect Dis 2024; 43:1297-1308. [PMID: 38696083 PMCID: PMC11271438 DOI: 10.1007/s10096-024-04789-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/20/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUD Although not fully investigated, studies show that Legionella pneumophila can develop antibiotic resistance. As there is limited data available for Portugal, we determined the antibiotic susceptibility profile of Portuguese L. pneumophila serogroup 1 (LpnSg1) isolates against antibiotics used in the clinical practice in Portugal. METHODS Minimum inhibitory concentrations (MICs) were determined for LpnSg1 clinical (n = 100) and related environmental (n = 7) isolates, collected between 2006-2022 in the context of the National Legionnaire´s Disease Surveillance Programme, against azithromycin, clarithromycin, erythromycin, levofloxacin, ciprofloxacin, moxifloxacin, rifampicin, doxycycline, tigecycline, and amoxicillin/clavulanic acid, using three different assays. Isolates were also PCR-screened for the presence of the lpeAB gene. RESULTS Twelve isolates had azithromycin MICs above the EUCAST tentative highest WT MIC, 9 of which were lpeAB negative; for erythromycin and clarithromycin, all isolates tested within the susceptible range. The number of isolates with MICs above the tentative highest WT MIC for the remaining antibiotics was: ciprofloxacin: 7; levofloxacin: 17; moxifloxacin: 8; rifampicin: 11; doxycycline: 82; tigecycline: 4. EUCAST breakpoints are not available for amoxicillin/clavulanic acid. We estimated the ECOFFs and one isolate had a MIC eightfold higher than the E-test ECOFF. Additionally, a clinical isolate generated three colonies growing on the E-test inhibition zone that resulted in MICs fourfold higher than for the parental isolate. CONCLUSIONS We report, for the first time, elevated MICs against first-line and other antibiotics (including azithromycin, fluoroquinolones and amoxicillin/clavulanic acid commonly used to treat pneumonia patients in Portugal) in Portuguese L. pneumophila strains. Results point towards decreased susceptibility in circulating strains, justifying further investigation.
Collapse
Affiliation(s)
- Corrado Minetti
- Department of Infectious Diseases, National Institute of Health Doctor Ricardo Jorge (INSA), Lisbon, Portugal
- ECDC Fellowship Programme, Public Health Microbiology Path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Rachael Barton
- Department of Medical Microbiology, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Caitlin Farley
- Department of Medical Microbiology, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Owen Brad Spiller
- Department of Medical Microbiology, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Raquel Rodrigues
- Water Microbiology Laboratory, National Institute of Health Doctor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Paulo Gonçalves
- National Reference Laboratory for Legionella, National Institute of Health Doctor Ricardo Jorge (INSA), Lisbon, Portugal.
| |
Collapse
|
3
|
Crépin A, Thiroux A, Alafaci A, Boukerb AM, Dufour I, Chrysanthou E, Bertaux J, Tahrioui A, Bazire A, Rodrigues S, Taupin L, Feuilloley M, Dufour A, Caillon J, Lesouhaitier O, Chevalier S, Berjeaud JM, Verdon J. Sensitivity of Legionella pneumophila to phthalates and their substitutes. Sci Rep 2023; 13:22145. [PMID: 38092873 PMCID: PMC10719263 DOI: 10.1038/s41598-023-49426-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
Phthalates constitute a family of anthropogenic chemicals developed to be used in the manufacture of plastics, solvents, and personal care products. Their dispersion and accumulation in many environments can occur at all stages of their use (from synthesis to recycling). However, many phthalates together with other accumulated engineered chemicals have been shown to interfere with hormone activities. These compounds are also in close contact with microorganisms that are free-living, in biofilms or in microbiota, within multicellular organisms. Herein, the activity of several phthalates and their substitutes were investigated on the opportunistic pathogen Legionella pneumophila, an aquatic microbe that can infect humans. Beside showing the toxicity of some phthalates, data suggested that Acetyl tributyl citrate (ATBC) and DBP (Di-n-butyl phthalate) at environmental doses (i.e. 10-6 M and 10-8 M) can modulate Legionella behavior in terms of motility, biofilm formation and response to antibiotics. A dose of 10-6 M mostly induced adverse effects for the bacteria, in contrast to a dose of 10-8 M. No perturbation of virulence towards Acanthamoeba castellanii was recorded. These behavioral alterations suggest that L. pneumophila is able to sense ATBC and DBP, in a cross-talk that either mimics the response to a native ligand, or dysregulates its physiology.
Collapse
Affiliation(s)
- Alexandre Crépin
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Audrey Thiroux
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Aurélien Alafaci
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Amine M Boukerb
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, UR4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Izelenn Dufour
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Eirini Chrysanthou
- Department of Life Sciences and Systems Biology, University of Turin, 10100, Turin, Italy
- Cancer Genomics Lab, Fondazione Edo ed Elvo Tempia, 13900, Biella, Italy
| | - Joanne Bertaux
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Ali Tahrioui
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, UR4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Alexis Bazire
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, Lorient, France
| | - Sophie Rodrigues
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, Lorient, France
| | - Laure Taupin
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, Lorient, France
| | - Marc Feuilloley
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, UR4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Alain Dufour
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, Lorient, France
| | - Jocelyne Caillon
- Faculté de Médecine, EA3826 Thérapeutiques Cliniques et Expérimentales des Infections, Université de Nantes, Nantes, France
| | - Olivier Lesouhaitier
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, UR4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Sylvie Chevalier
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, UR4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Jean-Marc Berjeaud
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Julien Verdon
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France.
| |
Collapse
|
4
|
Du R, Feng Y, Wang Y, Huang J, Tao Y, Mao H. Metagenomic next-generation sequencing confirms the diagnosis of Legionella pneumonia with rhabdomyolysis and acute kidney injury in a limited resource area: a case report and review. Front Public Health 2023; 11:1145733. [PMID: 37228720 PMCID: PMC10205016 DOI: 10.3389/fpubh.2023.1145733] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/11/2023] [Indexed: 05/27/2023] Open
Abstract
Background Legionella pneumonia, rhabdomyolysis, and acute kidney injury are called the Legionella triad, which is rare and associated with a poor outcome and even death. Early diagnosis and timely treatment are essential for these patients. Case presentation A 63-year-old man with cough, fever, and fatigue was initially misdiagnosed with common bacterial infection and given beta-lactam monotherapy but failed to respond to it. Conventional methods, including the first Legionella antibody test, sputum smear, and culture of sputum, blood, and bronchoalveolar lavage fluid (BALF) were negative. He was ultimately diagnosed with a severe infection of Legionella pneumophila by metagenomics next-generation sequencing (mNGS). This patient, who had multisystem involvement and manifested with the rare triad of Legionella pneumonia, rhabdomyolysis, and acute kidney injury, finally improved after combined treatment with moxifloxacin, continuous renal replacement therapy, and liver protection therapy. Conclusion Our results showed the necessity of early diagnosis of pathogens in severe patients, especially in Legionnaires' disease, who manifested with the triad of Legionella pneumonia, rhabdomyolysis, and acute kidney injury. mNGS may be a useful tool for Legionnaires' disease in limited resource areas where urine antigen tests are not available.
Collapse
Affiliation(s)
- Rao Du
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yinhe Feng
- Department of Respiratory and Critical Care Medicine, Deyang People's Hospital, Affiliated Hospital of Chengdu College of Medicine, Deyang, China
| | - Yubin Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jifeng Huang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yuhan Tao
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Mao
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Cruz C, Rodrigues L, Fernandes F, Santos R, Paixão P, Chasqueira MJ. Antibiotic susceptibility pattern of Portuguese environmental Legionella isolates. Front Cell Infect Microbiol 2023; 13:1141115. [PMID: 37153155 PMCID: PMC10160366 DOI: 10.3389/fcimb.2023.1141115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/24/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Legionnaires' Disease is a pneumonia caused by Legionella spp., currently treated empirically with fluoroquinolones and macrolides. In this study, we aim to describe the antibiotic susceptibility pattern of environmental Legionella recovered in the south of Portugal. Methods Minimal inhibitory concentration (MIC) determination of 57 Legionella isolates (10 Lp sg 1, 32, Lp sg 2-14 15 L. spp) was achieved by broth microdilution, as described by EUCAST, for azithromycin, clarithromycin, ciprofloxacin, levofloxacin, and doxycycline. Results Fluoroquinolones were the most active antibiotic, displaying the lowest MIC values in contrast to doxycycline which had the highest. MIC90 and epidemiological cut-off (ECOFF) values were, respectively, 0.5/1 mg/L for azithromycin, 0.125/0.25 mg/L for clarithromycin, 0.064/0.125 mg/L for ciprofloxacin, 0.125/0.125 mg/L for levofloxacin and 16/32 mg/L for doxycycline. Discussion MIC distributions were higher than reported by EUCAST for all antibiotics. Interestingly, two phenotypically resistant isolates with high-level quinolone resistance were identified. This is the first time that MIC distributions, lpeAB and tet56 genes have been investigated in Portuguese environmental isolates of Legionella.
Collapse
Affiliation(s)
- Carolina Cruz
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Lúcia Rodrigues
- Comprehensive Health Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Filipa Fernandes
- Laboratório de Análises de Água, Técnico Lisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Ricardo Santos
- Laboratório de Análises de Água, Técnico Lisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Paulo Paixão
- Comprehensive Health Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Maria Jesus Chasqueira
- Comprehensive Health Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|