1
|
Zhu M, Zhang H, Cui W, Su Y, Sun S, Zhao C, Liu Q. Performance evaluation of rhamnolipid biosurfactant produced by Pseudomonas aeruginosa and its effect on marine oil-spill remediation. Arch Microbiol 2024; 206:183. [PMID: 38502272 DOI: 10.1007/s00203-024-03903-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/30/2024] [Accepted: 02/18/2024] [Indexed: 03/21/2024]
Abstract
This study aimed to reveal that the effect of biosurfactant on the dispersion and degradation of crude oil. Whole genome analysis showed that Pseudomonas aeruginosa GB-3 contained abundant genes involved in biosurfactant synthesis and metabolic processes and had the potential to degrade oil. The biosurfactant produced by strain GB-3 was screened by various methods. The results showed that the surface tension reduction activity was 28.6 mN·m-1 and emulsification stability was exhibited at different pH, salinity and temperature. The biosurfactant was identified as rhamnolipid by LC-MS and FTIR. The fermentation conditions of strain GB-3 were optimized by response surface methodology, finally the optimal system (carbon source: glucose, nitrogen source: ammonium sulfate, C/N ratio:16:1, pH: 7, temperature: 30-35 °C) was determined. Compared with the initial fermentation, the yield of biosurfactant increased by 4.4 times after optimization. In addition, rhamnolipid biosurfactant as a dispersant could make the dispersion of crude oil reach 38% within seven days, which enhanced the bioavailability of crude oil. As a biostimulant, it could also improve the activity of indigenous microorganism and increase the degradation rate of crude oil by 10-15%. This study suggested that rhamnolipid biosurfactant had application prospect in bioremediation of marine oil-spill.
Collapse
Affiliation(s)
- Mingjun Zhu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, People's Republic of China
| | - Hang Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, People's Republic of China
| | - Wu Cui
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, People's Republic of China
| | - Yuhua Su
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, People's Republic of China
| | - Shuo Sun
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, People's Republic of China
| | - Chaocheng Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, People's Republic of China
| | - Qiyou Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China.
- State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, People's Republic of China.
| |
Collapse
|
2
|
Zhao X, Liao Z, Liu T, Cheng W, Gao G, Yang M, Ma T, Li G. Investigation of the transport and metabolic patterns of oil-displacing bacterium FY-07-G in the microcosm model using X-CT technology. J Appl Microbiol 2023; 134:lxad281. [PMID: 38059862 DOI: 10.1093/jambio/lxad281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/13/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023]
Abstract
AIMS Microbial enhanced oil recovery (MEOR) is dedicated to enhancing oil recovery by harnessing microbial metabolic activities and their byproducts within reservoir rocks and fluids. Therefore, the investigation of microbial mobility and their extensive distribution within crude oil is of paramount importance in MEOR. While microscale models have been valuable for studying bacterial strain behavior in reservoirs, they are typically limited to 2D representations of porous media, making them inadequate for simulating actual reservoir conditions. Consequently, there is a critical need for 3D models and dependable visualization methods to observe bacterial transport and metabolism within these complex reservoir environments. METHODS AND RESULTS Bacterial cellulose (bc) is a water-insoluble polysaccharide produced by bacteria that exhibits biocompatibility and biodegradability. It holds significant potential for applications in the field of MEOR as an effective means for selective plugging and spill prevention during oil displacement processes. Conditionally cellulose-producing strain, FY-07-G, with green fluorescent labeling, was engineered for enhanced oil recovery. 3D micro-visualization model was constructed to directly observe the metabolic activities of the target bacterial strain within porous media and to assess the plugging interactions between cellulose and the medium. Additionally, X-ray computed tomography (X-CT) technology was employed for a comprehensive analysis of the transport patterns of the target strain in oil reservoirs with varying permeabilities. The results indicated that FY-07-G, as a microorganism employing biopolymer-based plugging principles to enhance oil recovery, selectively targets and seals regions characterized by lower permeability and smaller pore spaces. CONCLUSIONS This work provided valuable insights into the transport and metabolic behavior of MEOR strains and tackled the limitation of 2D models in faithfully replicating oil reservoir conditions, offering essential theoretical guidance and insights for the further application of oil-displacing bacterial strains in MEOR processes.
Collapse
Affiliation(s)
- Xueqing Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zitong Liao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Tongtong Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wei Cheng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ge Gao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mingbo Yang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
- Tianjin Engineering Technology Center of Green Manufacturing Biobased Materials,College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Guoqiang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
- Tianjin Engineering Technology Center of Green Manufacturing Biobased Materials,College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|