1
|
Elfmann C, Dumann V, van den Berg T, Stülke J. A new framework for SubtiWiki, the database for the model organism Bacillus subtilis. Nucleic Acids Res 2025; 53:D864-D870. [PMID: 39441067 PMCID: PMC11701700 DOI: 10.1093/nar/gkae957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
Bacillus subtilis is a Gram-positive model bacterium and one of the most-studied and best understood organisms. The complex information resulting from its investigation is compiled in the database SubtiWiki (https://subtiwiki.uni-goettingen.de/v5) in an integrated and intuitive manner. To enhance the utility of SubtiWiki, we have added novel features such as a viewer to interrogate conserved genomic organization, a widget that shows mutant fitness data for all non-essential genes, and a widget showing protein structures, structure predictions and complex structures. Moreover, we have integrated metabolites as new entities. The new framework also includes a documented API, enabling programmatic access to data for computational tasks. Here we present the recent developments of SubtiWiki and the current state of the data for this organism.
Collapse
Affiliation(s)
- Christoph Elfmann
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Vincenz Dumann
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Tim van den Berg
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Jörg Stülke
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| |
Collapse
|
2
|
Ana Y, Gerngross D, Serrano L. Heterologous protein exposure and secretion optimization in Mycoplasma pneumoniae. Microb Cell Fact 2024; 23:306. [PMID: 39533283 PMCID: PMC11558893 DOI: 10.1186/s12934-024-02574-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
The non-pathogenic Mycoplasma pneumoniae engineered chassis (Mycochassis) has demonstrated the ability to express therapeutic molecules in vitro and to be effective for treatment of lung infectious diseases in in vivo mouse models. However, the expression of heterologous molecules, whether secreted or exposed on the bacterial membrane has not been optimized to ensure sufficient secretion and/or exposure levels to exert a maximum in vivo biological effect. Here, we have improved the currently used secretion signal from MPN142 protein. We found that mutations at P1' position of the signal peptide cleavage site do not abrogate secretion but affect it. Increasing hydrophobicity and mutations at the C-terminal of the signal peptide increases secretion. We tested different lipoprotein signal peptides as possible N-terminal protein anchoring motifs on the Mpn cell surface. Unexpectedly we found that these peptides exhibit variable retention and secretion rates of the protein, with some sequences behaving as full secretion motifs. This raises the question of the biological role of the lipobox motif traditionally thought to anchor membrane proteins without a helical transmembrane domain. These results altogether represent a step forward in chassis optimization, offering different sequences for secretion or membrane retention, which could be used to improve Mycochassis as a delivery vector, and broadening its therapeutic possibilities.
Collapse
Affiliation(s)
- Yamile Ana
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Daniel Gerngross
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
- Lab Automation Facility, Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain.
| |
Collapse
|
3
|
Bellinzona G, Sassera D, Bonvin AMJJ. Accelerating protein-protein interaction screens with reduced AlphaFold-Multimer sampling. BIOINFORMATICS ADVANCES 2024; 4:vbae153. [PMID: 39464748 PMCID: PMC11513016 DOI: 10.1093/bioadv/vbae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024]
Abstract
Motivation Discovering new protein-protein interactions (PPIs) across entire proteomes offers vast potential for understanding novel protein functions and elucidate system properties within or between an organism. While recent advances in computational structural biology, particularly AlphaFold-Multimer, have facilitated this task, scaling for large-scale screenings remains a challenge, requiring significant computational resources. Results We evaluated the impact of reducing the number of models generated by AlphaFold-Multimer from five to one on the method's ability to distinguish true PPIs from false ones. Our evaluation was conducted on a dataset containing both intra- and inter-species PPIs, which included proteins from bacterial and eukaryotic sources. We demonstrate that reducing the sampling does not compromise the accuracy of the method, offering a faster, efficient, and environmentally friendly solution for PPI predictions. Availability and implementation The code used in this article is available at https://github.com/MIDIfactory/AlphaFastPPi. Note that the same can be achieved using the latest version of AlphaPulldown available at https://github.com/KosinskiLab/AlphaPulldown.
Collapse
Affiliation(s)
- Greta Bellinzona
- Department of Biology and Biotechnology, University of Pavia, Pavia 27100, Italy
| | - Davide Sassera
- Department of Biology and Biotechnology, University of Pavia, Pavia 27100, Italy
- IRCCS Policlinico San Matteo, Pavia 27100, Italy
| | - Alexandre M J J Bonvin
- Department of Chemistry, Faculty of Science, Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Utrecht 3584 CS, The Netherlands
| |
Collapse
|
4
|
Elfmann C, Zhu B, Stülke J, Halbedel S. ListiWiki: A database for the foodborne pathogen Listeria monocytogenes. Int J Med Microbiol 2023; 313:151591. [PMID: 38043216 DOI: 10.1016/j.ijmm.2023.151591] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023] Open
Abstract
Listeria monocytogenes is a Gram positive foodborne pathogen that regularly causes outbreaks of systemic infectious diseases. The bacterium maintains a facultative intracellular lifestyle; it thrives under a variety of environmental conditions and is able to infect human host cells. L. monocytogenes is genetically tractable and therefore has become an attractive model system to study the mechanisms employed by facultative intracellular bacteria to invade eukaryotic cells and to replicate in their cytoplasm. Besides its importance for basic research, L. monocytogenes also serves as a paradigmatic pathogen in genomic epidemiology, where the relative stability of its genome facilitates successful outbreak detection and elucidation of transmission chains in genomic pathogen surveillance systems. In both terms, it is necessary to keep the annotation of the L. monocytogenes genome up to date. Therefore, we have created the database ListiWiki (http://listiwiki.uni-goettingen.de/) which stores comprehensive information on the widely used L. monocytogenes reference strain EDG-e. ListiWiki is designed to collect information on genes, proteins and RNAs and their relevant functional characteristics, but also further information such as mutant phenotypes, available biological material, and publications. In its present form, ListiWiki combines the most recent annotation of the EDG-e genome with published data on gene essentiality, gene expression and subcellular protein localization. ListiWiki also predicts protein-protein interactions networks based on protein homology to Bacillus subtilis proteins, for which detailed interaction maps have been compiled in the sibling database SubtiWiki. Furthermore, crystallographic information of proteins is made accessible through integration of Protein Structure Database codes and AlphaFold structure predictions. ListiWiki is an easy-to-use web interface that has been developed with a focus on an intuitive access to all information. Use of ListiWiki is free of charge and its content can be edited by all members of the scientific community after registration. In our labs, ListiWiki has already become an important and easy to use tool to quickly access genome annotation details that we can keep updated with advancing knowledge. It also might be useful to promote the comprehensive understanding of the physiology and virulence of an important human pathogen.
Collapse
Affiliation(s)
- Christoph Elfmann
- Department of General Microbiology, Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, Göttingen, Germany
| | - Bingyao Zhu
- Department of General Microbiology, Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, Göttingen, Germany
| | - Jörg Stülke
- Department of General Microbiology, Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, Göttingen, Germany.
| | - Sven Halbedel
- FG11 Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Burgstrasse 37, 38855 Wernigerode, Germany; Institute for Medical Microbiology and Hospital Hygiene, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany.
| |
Collapse
|
5
|
Wicke D, Meißner J, Warneke R, Elfmann C, Stülke J. Understudied proteins and understudied functions in the model bacterium Bacillus subtilis-A major challenge in current research. Mol Microbiol 2023. [PMID: 36882621 DOI: 10.1111/mmi.15053] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023]
Abstract
Model organisms such as the Gram-positive bacterium Bacillus subtilis have been studied intensively for decades. However, even for model organisms, no function has been identified for about one fourth of all proteins. It has recently been realized that such understudied proteins as well as poorly studied functions set a limitation to our understanding of the requirements for cellular life, and the Understudied Proteins Initiative has been launched. Of poorly studied proteins, those that are strongly expressed are likely to be important to the cell and should therefore be considered high priority in further studies. Since the functional analysis of unknown proteins can be extremely laborious, a minimal knowledge is required prior to targeted functional studies. In this review, we discuss strategies to obtain such a minimal annotation, for example, from global interaction, expression, or localization studies. We present a set of 41 highly expressed and poorly studied proteins of B. subtilis. Several of these proteins are thought or known to bind RNA and/or the ribosome, some may control the metabolism of B. subtilis, and another subset of particularly small proteins may act as regulatory elements to control the expression of downstream genes. Moreover, we discuss the challenges of poorly studied functions with a focus on RNA-binding proteins, amino acid transport, and the control of metabolic homeostasis. The identification of the functions of the selected proteins not only will strongly advance our knowledge on B. subtilis, but also on other organisms since many of the proteins are conserved in many groups of bacteria.
Collapse
Affiliation(s)
- Dennis Wicke
- Department of General Microbiology, Georg-August-University Göttingen, GZMB, Göttingen, Germany
| | - Janek Meißner
- Department of General Microbiology, Georg-August-University Göttingen, GZMB, Göttingen, Germany
| | - Robert Warneke
- Department of General Microbiology, Georg-August-University Göttingen, GZMB, Göttingen, Germany
| | - Christoph Elfmann
- Department of General Microbiology, Georg-August-University Göttingen, GZMB, Göttingen, Germany
| | - Jörg Stülke
- Department of General Microbiology, Georg-August-University Göttingen, GZMB, Göttingen, Germany
| |
Collapse
|