1
|
Fukatsu T, Kakizawa S, Harumoto T, Sugio A, Kuo CH. Editorial: Spiroplasma, Mycoplasma, Phytoplasma, and other genome-reduced and wall-less mollicutes: their genetics, genomics, mechanics, interactions and symbiosis with insects, other animals and plants. Front Microbiol 2024; 15:1477536. [PMID: 39282558 PMCID: PMC11392750 DOI: 10.3389/fmicb.2024.1477536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Affiliation(s)
- Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Shigeyuki Kakizawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Toshiyuki Harumoto
- Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Akiko Sugio
- IGEPP, INRAE, Institut Agro, University of Rennes, Le Rheu, France
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
2
|
Rodrigues Jardim B, Tran-Nguyen LTT, Gambley C, Webster C, Kehoe M, Bond S, Rodoni B, Constable FE. 'Candidatus Phytoplasma vignae', assigning a species description to a long-known phytoplasma occurring in northern Australia. Int J Syst Evol Microbiol 2024; 74:006502. [PMID: 39190596 PMCID: PMC11349051 DOI: 10.1099/ijsem.0.006502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Gene- and genome-based approaches were used to determine whether Vigna little leaf (ViLL) phytoplasma, which occurs in northern Australia, is a distinct 'Candidatus Phytoplasma' species. The ViLL 16S rRNA gene sequences exhibited the highest known similarity to species in the 16SrXXIX-A and 16SrIX-D subgroups, namely 'Candidatus Phytoplasma omanense' (98.03-98.10%) and 'Candidatus Phytoplasma phoenicium' (96.87-97.20%), respectively. A total of 48 single-copy orthologue genes were identified to be shared among the two draft ViLL phytoplasma genomes, 30 publicly available phytoplasma genomes, and one Acholeplasma laidlawii genome as the outgroup taxon. Phylogenomic assessments using the 48 shared single-copy orthologue genes supported that ViLL and 'Ca. Phytoplasma phoenicium' were closely related yet distinct species. The 16S rRNA gene sequence analysis and phylogenomic assessment indicate that ViLL phytoplasmas are a distinct taxon. As such, a novel species, 'Candidatus Phytoplasma vignae', is proposed. Strain BAWM-336 (genome accession number JAUZLI000000000) detected in Momordica charantia (bitter melon) serves as the reference strain of this species, with infected plant material deposited in the Victorian Plant Pathology Herbarium (VPRI) as VPRI 44369.
Collapse
Affiliation(s)
- Bianca Rodrigues Jardim
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
- Agriculture Victoria Research, Department of Energy, Environment and Climate Action, AgriBio, Bundoora, Australia
| | | | - Cherie Gambley
- Horticulture and Forestry Science, Department of Agriculture and Fisheries Maroochy Research Facility, Nambour, Australia
| | - Craig Webster
- Diagnostic Laboratory Services, Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Monica Kehoe
- Diagnostic Laboratory Services, Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Samantha Bond
- Biosecurity and Animal Welfare, Department of Industry, Tourism and Trade, Darwin, Australia
| | - Brendan Rodoni
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
- Agriculture Victoria Research, Department of Energy, Environment and Climate Action, AgriBio, Bundoora, Australia
| | - Fiona E. Constable
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
- Agriculture Victoria Research, Department of Energy, Environment and Climate Action, AgriBio, Bundoora, Australia
| |
Collapse
|
3
|
Rodrigues Jardim B, Gambley C, Tran-Nguyen LTT, Webster C, Kehoe M, Kinoti WM, Bond S, Davis R, Jones L, Pathania N, Sharman M, Chapman T, Rodoni BC, Constable FE. A metagenomic investigation of phytoplasma diversity in Australian vegetable growing regions. Microb Genom 2024; 10:001213. [PMID: 38446015 PMCID: PMC10999746 DOI: 10.1099/mgen.0.001213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
In this study, metagenomic sequence data was used to investigate the phytoplasma taxonomic diversity in vegetable-growing regions across Australia. Metagenomic sequencing was performed on 195 phytoplasma-positive samples, originating either from historic collections (n=46) or during collection efforts between January 2015 and June 2022 (n=149). The sampled hosts were classified as crop (n=155), weed (n=24), ornamental (n=7), native plant (n=6), and insect (n=3) species. Most samples came from Queensland (n=78), followed by Western Australia (n=46), the Northern Territory (n=32), New South Wales (n=17), and Victoria (n=10). Of the 195 draft phytoplasma genomes, 178 met our genome criteria for comparison using an average nucleotide identity approach. Ten distinct phytoplasma species were identified and could be classified within the 16SrII, 16SrXII (PCR only), 16SrXXV, and 16SrXXXVIII phytoplasma groups, which have all previously been recorded in Australia. The most commonly detected phytoplasma taxa in this study were species and subspecies classified within the 16SrII group (n=153), followed by strains within the 16SrXXXVIII group ('Ca. Phytoplasma stylosanthis'; n=6). Several geographic- and host-range expansions were reported, as well as mixed phytoplasma infections of 16SrII taxa and 'Ca. Phytoplasma stylosanthis'. Additionally, six previously unrecorded 16SrII taxa were identified, including five putative subspecies of 'Ca. Phytoplasma australasiaticum' and a new putative 16SrII species. PCR and sequencing of the 16S rRNA gene was a suitable triage tool for preliminary phytoplasma detection. Metagenomic sequencing, however, allowed for higher-resolution identification of the phytoplasmas, including mixed infections, than was afforded by only direct Sanger sequencing of the 16S rRNA gene. Since the metagenomic approach theoretically obtains sequences of all organisms in a sample, this approach was useful to confirm the host family, genus, and/or species. In addition to improving our understanding of the phytoplasma species that affect crop production in Australia, the study also significantly expands the genomic sequence data available in public sequence repositories to contribute to phytoplasma molecular epidemiology studies, revision of taxonomy, and improved diagnostics.
Collapse
Affiliation(s)
- Bianca Rodrigues Jardim
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
- Agriculture Victoria Research, Department of Energy, Environment and Climate Action, AgriBio, Bundoora, Victoria, Australia
| | - Cherie Gambley
- Horticulture and Forestry Science, Department of Agriculture and Fisheries Maroochy Research Facility, Nambour, Queensland, Australia
| | | | - Craig Webster
- Diagnostic Laboratory Services, Department of Primary Industries and Regional Development, South Perth, Western Australia, Australia
| | - Monica Kehoe
- Diagnostic Laboratory Services, Department of Primary Industries and Regional Development, South Perth, Western Australia, Australia
| | - Wycliff M. Kinoti
- Agriculture Victoria Research, Department of Energy, Environment and Climate Action, AgriBio, Bundoora, Victoria, Australia
| | - Samantha Bond
- Biosecurity and Animal Welfare, Department of Industry, Tourism and Trade, Darwin, Northern Territory, Australia
| | - Richard Davis
- Northern Australia Quarantine Strategy, Department of Agriculture, Fisheries and Forestry, Canberra, Australian Capital Territory, 2601, Australia
| | - Lynne Jones
- Northern Australia Quarantine Strategy, Department of Agriculture, Fisheries and Forestry, Canberra, Australian Capital Territory, 2601, Australia
| | - Nandita Pathania
- Department of Agriculture and Fisheries, Mareeba, Queensland, Australia
| | - Murray Sharman
- Department of Agriculture and Fisheries, Ecosciences Precinct, Dutton Park, Queensland 4102, Australia
| | - Toni Chapman
- Biosecurity and Food Safety, New South Wales Department of Primary Industries, Elizabeth Macarthur Agricultural Institute (EMAI), Menangle, New South Wales, 2567, Australia
| | - Brendan C. Rodoni
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
- Agriculture Victoria Research, Department of Energy, Environment and Climate Action, AgriBio, Bundoora, Victoria, Australia
| | - Fiona E. Constable
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
- Agriculture Victoria Research, Department of Energy, Environment and Climate Action, AgriBio, Bundoora, Victoria, Australia
| |
Collapse
|
4
|
Wang R, Bai B, Li D, Wang J, Huang W, Wu Y, Zhao L. Phytoplasma: A plant pathogen that cannot be ignored in agricultural production-Research progress and outlook. MOLECULAR PLANT PATHOLOGY 2024; 25:e13437. [PMID: 38393681 PMCID: PMC10887288 DOI: 10.1111/mpp.13437] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024]
Abstract
Phytoplasmas are phloem-restricted plant-pathogenic bacteria transmitted by insects. They cause diseases in a wide range of host plants, resulting in significant economic and ecological losses worldwide. Research on phytoplasmas has a long history, with significant progress being made in the past 30 years. Notably, with the rapid development of phytoplasma research, scientists have identified the primary agents involved in phytoplasma transmission, established classification and detection systems for phytoplasmas, and 243 genomes have been sequenced and assembled completely or to draft quality. Multiple possible phytoplasma effectors have been investigated, elucidating the molecular mechanisms by which phytoplasmas manipulate their hosts. This review summarizes recent advances in phytoplasma research, including identification techniques, host range studies, whole- or draft-genome sequencing, effector pathogenesis and disease control methods. Additionally, future research directions in the field of phytoplasma research are discussed.
Collapse
Affiliation(s)
- Ruotong Wang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency ProductionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Bixin Bai
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency ProductionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Danyang Li
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency ProductionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Jingke Wang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency ProductionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Weijie Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Yunfeng Wu
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency ProductionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Lei Zhao
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency ProductionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
5
|
Rodrigues Jardim B, Tran-Nguyen LTT, Gambley C, Al-Sadi AM, Al-Subhi AM, Foissac X, Salar P, Cai H, Yang JY, Davis R, Jones L, Rodoni B, Constable FE. The observation of taxonomic boundaries for the 16SrII and 16SrXXV phytoplasmas using genome-based delimitation. Int J Syst Evol Microbiol 2023; 73. [PMID: 37486824 DOI: 10.1099/ijsem.0.005977] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023] Open
Abstract
Within the 16SrII phytoplasma group, subgroups A-X have been classified based on restriction fragment length polymorphism of their 16S rRNA gene, and two species have been described, namely 'Candidatus Phytoplasma aurantifolia' and 'Ca. Phytoplasma australasia'. Strains of 16SrII phytoplasmas are detected across a broad geographic range within Africa, Asia, Australia, Europe and North and South America. Historically, all members of the 16SrII group share ≥97.5 % nucleotide sequence identity of their 16S rRNA gene. In this study, we used whole genome sequences to identify the species boundaries within the 16SrII group. Whole genome analyses were done using 42 phytoplasma strains classified into seven 16SrII subgroups, five 16SrII taxa without official 16Sr subgroup classifications, and one 16SrXXV-A phytoplasma strain used as an outgroup taxon. Based on phylogenomic analyses as well as whole genome average nucleotide and average amino acid identity (ANI and AAI), eight distinct 16SrII taxa equivalent to species were identified, six of which are novel descriptions. Strains within the same species had ANI and AAI values of >97 %, and shared ≥80 % of their genomic segments based on the ANI analysis. Species also had distinct biological and/or ecological features. A 16SrII subgroup often represented a distinct species, e.g., the 16SrII-B subgroup members. Members classified within the 16SrII-A, 16SrII-D, and 16SrII-V subgroups as well as strains classified as sweet potato little leaf phytoplasmas fulfilled criteria to be included as members of a single species, but with subspecies-level relationships with each other. The 16SrXXV-A taxon was also described as a novel phytoplasma species and, based on criteria used for other bacterial families, provided evidence that it could be classified as a distinct genus from the 16SrII phytoplasmas. As more phytoplasma genome sequences become available, the classification system of these bacteria can be further refined at the genus, species, and subspecies taxonomic ranks.
Collapse
Affiliation(s)
- Bianca Rodrigues Jardim
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
- Agriculture Victoria Research, Department of Energy, Environment and Climate Action, AgriBio, Bundoora, Victoria, Australia
| | | | - Cherie Gambley
- Horticulture and Forestry Science, Department of Agriculture and Fisheries Maroochy Research Facility, Nambour, Queensland, Australia
| | - Abdullah M Al-Sadi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Ali M Al-Subhi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Xavier Foissac
- University of Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, 33140, Bordeaux, Villenave d'Ornon, France
| | - Pascal Salar
- University of Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, 33140, Bordeaux, Villenave d'Ornon, France
| | - Hong Cai
- The Key Laboratory for Plant Pathology, Yunnan Agricultural University, Kunming 650201, PR China
| | - Jun-Yi Yang
- Institute of Biochemistry, National Chung Hsing University, Taichung 402, Taiwan, ROC
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan, ROC
| | - Richard Davis
- Northern Australia Quarantine Strategy, Department of Agriculture, Fisheries and Forestry, Canberra, Australian Capital Territory 2601, Australia
| | - Lynne Jones
- Northern Australia Quarantine Strategy, Department of Agriculture, Fisheries and Forestry, Canberra, Australian Capital Territory 2601, Australia
| | - Brendan Rodoni
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
- Agriculture Victoria Research, Department of Energy, Environment and Climate Action, AgriBio, Bundoora, Victoria, Australia
| | - Fiona E Constable
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
- Agriculture Victoria Research, Department of Energy, Environment and Climate Action, AgriBio, Bundoora, Victoria, Australia
| |
Collapse
|