1
|
Jin J, Wu Y, Cao P, Zheng X, Zhang Q, Chen Y. Potential and challenge in accelerating high-value conversion of CO 2 in microbial electrosynthesis system via data-driven approach. BIORESOURCE TECHNOLOGY 2024; 412:131380. [PMID: 39214179 DOI: 10.1016/j.biortech.2024.131380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Microbial electrosynthesis for CO2 utilization (MESCU) producing valuable chemicals with high energy density has garnered attention due to its long-term stability and high coulombic efficiency. The data-driven approaches offer a promising avenue by leveraging existing data to uncover the underlying patterns. This comprehensive review firstly uncovered the potentials of utilizing data-driven approaches to enhance high-value conversion of CO2 via MESCU. Firstly, critical challenges of MESCU advancing have been identified, including reactor configuration, cathode design, and microbial analysis. Subsequently, the potential of data-driven approaches to tackle the corresponding challenges, encompassing the identification of pivotal parameters governing reactor setup and cathode design, alongside the decipheration of omics data derived from microbial communities, have been discussed. Correspondingly, the future direction of data-driven approaches in assisting the application of MESCU has been addressed. This review offers guidance and theoretical support for future data-driven applications to accelerate MESCU research and potential industrialization.
Collapse
Affiliation(s)
- Jiasheng Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Peiyu Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Qingran Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
2
|
Samanides CG, Vyrides I. Effect of bicarbonate on hydrogen generation by Zero-Valent iron and its impact on generation of acetic acid by seven different inocula. BIORESOURCE TECHNOLOGY 2024; 406:131004. [PMID: 38889870 DOI: 10.1016/j.biortech.2024.131004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/15/2024] [Accepted: 06/15/2024] [Indexed: 06/20/2024]
Abstract
This study demonstrates the substantial role of bicarbonate within a zero-valent iron (ZVI) system in hydrogen evolution, demonstrating that heightened concentration levels notably enhance hydrogen output. The acetic acid performance production of seven different inocula was examined when exposed to ZVI and CO2 as the sole carbon source, separately. Along the seven inocula, river and constructed wetland sludges show the highest production rates at 300 mg/L day-1 and 269 mg/L day-1, respectively. Acetobacterium levels significantly rose in CO2-enriched environments, particularly in river and wetland sludges. Moreover, bacteria attached to ZVI showed accelerated hydrogen consumption and acetic acid production compared to their freely suspended or ZVI-detached counterparts when hydrogen was primarily added externally. This study highlighted the positive effect of high concentrations of soluble CO₂, which acted both as a reactant with ZVI for hydrogen production and as a substrate for homoacetogens, leading to high acetic acid generation.
Collapse
Affiliation(s)
- Charis G Samanides
- Department of Chemical Engineering, Cyprus University of Technology, 57 Anexartisias Str., P.O. BOX 50329, 3603 Limassol, Cyprus
| | - Ioannis Vyrides
- Department of Chemical Engineering, Cyprus University of Technology, 57 Anexartisias Str., P.O. BOX 50329, 3603 Limassol, Cyprus.
| |
Collapse
|
3
|
Bian B, Yu N, Akbari A, Shi L, Zhou X, Xie C, Saikaly PE, Logan BE. Using a non-precious metal catalyst for long-term enhancement of methane production in a zero-gap microbial electrosynthesis cell. WATER RESEARCH 2024; 259:121815. [PMID: 38820732 DOI: 10.1016/j.watres.2024.121815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/02/2024]
Abstract
Microbial electrosynthesis (MES) cells exploit the ability of microbes to convert CO2 into valuable chemical products such as methane and acetate, but high rates of chemical production may need to be mediated by hydrogen and thus require a catalyst for the hydrogen evolution reaction (HER). To avoid the usage of precious metal catalysts and examine the impact of the catalyst on the rate of methane generation by microbes on the electrode, we used a carbon felt cathode coated with NiMo/C and compared performance to a bare carbon felt or a Pt/C-deposited cathode. A zero-gap configuration containing a cation exchange membrane was developed to produce a low internal resistance, limit pH changes, and enhance direct transport of H2 to microorganisms on the biocathode. At a fixed cathode potential of -1 V vs Ag/AgCl, the NiMo/C biocathode enabled a current density of 23 ± 4 A/m2 and a high methane production rate of 4.7 ± 1.0 L/L-d. This performance was comparable to that using a precious metal catalyst (Pt/C, 23 ± 6 A/m2, 5.4 ± 2.8 L/L-d), and 3-5 times higher than plain carbon cathodes (8 ± 3 A/m2, 1.0 ± 0.4 L/L-d). The NiMo/C biocathode was operated for over 120 days without observable decay or severe cathode catalyst leaching, reaching an average columbic efficiency of 53 ± 9 % based on methane production under steady state conditions. Analysis of microbial community on the biocathode revealed the dominance of the hydrogenotrophic genus Methanobacterium (∼40 %), with no significant difference found for biocathodes with different materials. These results demonstrated that HER catalysts improved rates of methane generation through facilitating hydrogen gas evolution to an attached biofilm, and that the long-term enhancement of methane production in MES was feasible using a non-precious metal catalyst and a zero-gap cell design.
Collapse
Affiliation(s)
- Bin Bian
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Najiaowa Yu
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Amir Akbari
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Le Shi
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xuechen Zhou
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Chenghan Xie
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Pascal E Saikaly
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Bruce E Logan
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA; Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
4
|
Llorente M, Tejedor‐Sanz S, Berná A, Manchón C, Esteve‐Núñez A. Novel electrochemical strategies for the microbial conversion of CO 2 into biomass and volatile fatty acids using a fluid-like bed electrode in a three-phase reactor. Microb Biotechnol 2024; 17:e14383. [PMID: 38231155 PMCID: PMC10832540 DOI: 10.1111/1751-7915.14383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 01/18/2024] Open
Abstract
Microbial electrosynthesis (MES) constitutes a bioelectrochemical process where bacteria uptake electrons extracellularly from a polarized electrode to incorporate them into their anabolic metabolism. However, the efficiency of current MES reactor designs can be lower than expected due to limitations regarding electron transfer and mass transport. One of the most promising bioreactor configurations to overcome these bottlenecks is the Microbial Electrochemical Fluidized Bed Reactor (ME-FBR). In this study, microbial CO2 fixation is investigated for the first time in a ME-FBR operated as a 3-phase reactor (solid-liquid-gas). An electroconductive carbon bed, acting as a working electrode, was fluidized with gas and polarized at different potentials (-0.6, -0.8 and -1 V vs. Ag/AgCl) so it could act as an electron donor (biocathode). Under these potentials, CO2 fixation and electron transfer were evaluated. Autotrophic electroactive microorganisms from anaerobic wastewater were enriched in a ME-FBR in the presence of 2-bromoethanosulfonic acid (BES) to inhibit the growth of methanogens. Cyclic voltammetry analysis revealed interaction between the microorganisms and the cathode. Furthermore, volatile fatty acids like propionate, formate and acetate were detected in the culture supernatant. Acetate production had a maximum rate of ca. 1 g L-1 day-1 . Planktonic cell biomass was produced under continuous culture at values as high as ca. 0.7 g L-1 dry weight. Overall, this study demonstrates the feasibility of employing a fluidized electrode with gaseous substrates and electricity as the energy source for generating biomass and carboxylic acids.
Collapse
Affiliation(s)
- María Llorente
- Department of Chemical EngineeringUniversidad de AlcaláAlcalá de HenaresMadridSpain
| | - Sara Tejedor‐Sanz
- Department of Chemical EngineeringUniversidad de AlcaláAlcalá de HenaresMadridSpain
| | | | - Carlos Manchón
- Department of Chemical EngineeringUniversidad de AlcaláAlcalá de HenaresMadridSpain
| | - Abraham Esteve‐Núñez
- Department of Chemical EngineeringUniversidad de AlcaláAlcalá de HenaresMadridSpain
- IMDEA WATERAlcalá de HenaresMadridSpain
| |
Collapse
|
5
|
Romans-Casas M, Feliu-Paradeda L, Tedesco M, Hamelers HV, Bañeras L, Balaguer MD, Puig S, Dessì P. Selective butyric acid production from CO 2 and its upgrade to butanol in microbial electrosynthesis cells. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 17:100303. [PMID: 37635954 PMCID: PMC10457423 DOI: 10.1016/j.ese.2023.100303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/16/2023] [Accepted: 07/22/2023] [Indexed: 08/29/2023]
Abstract
Microbial electrosynthesis (MES) is a promising carbon utilization technology, but the low-value products (i.e., acetate or methane) and the high electric power demand hinder its industrial adoption. In this study, electrically efficient MES cells with a low ohmic resistance of 15.7 mΩ m2 were operated galvanostatically in fed-batch mode, alternating periods of high CO2 and H2 availability. This promoted acetic acid and ethanol production, ultimately triggering selective (78% on a carbon basis) butyric acid production via chain elongation. An average production rate of 14.5 g m-2 d-1 was obtained at an applied current of 1.0 or 1.5 mA cm-2, being Megasphaera sp. the key chain elongating player. Inoculating a second cell with the catholyte containing the enriched community resulted in butyric acid production at the same rate as the previous cell, but the lag phase was reduced by 82%. Furthermore, interrupting the CO2 feeding and setting a constant pH2 of 1.7-1.8 atm in the cathode compartment triggered solventogenic butanol production at a pH below 4.8. The efficient cell design resulted in average cell voltages of 2.6-2.8 V and a remarkably low electric energy requirement of 34.6 kWhel kg-1 of butyric acid produced, despite coulombic efficiencies being restricted to 45% due to the cross-over of O2 and H2 through the membrane. In conclusion, this study revealed the optimal operating conditions to achieve energy-efficient butyric acid production from CO2 and suggested a strategy to further upgrade it to valuable butanol.
Collapse
Affiliation(s)
- Meritxell Romans-Casas
- LEQUiA, Institute of the Environment, University of Girona. Campus Montilivi, Carrer Maria Aurèlia Capmany 69, E-17003, Girona, Spain
| | - Laura Feliu-Paradeda
- Molecular Microbial Ecology Group, Institute of Aquatic Ecology, University of Girona, Maria Aurèlia Capmany 40, 17003, Girona, Spain
| | - Michele Tedesco
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, the Netherlands
| | - Hubertus V.M. Hamelers
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, the Netherlands
| | - Lluis Bañeras
- Molecular Microbial Ecology Group, Institute of Aquatic Ecology, University of Girona, Maria Aurèlia Capmany 40, 17003, Girona, Spain
| | - M. Dolors Balaguer
- LEQUiA, Institute of the Environment, University of Girona. Campus Montilivi, Carrer Maria Aurèlia Capmany 69, E-17003, Girona, Spain
| | - Sebastià Puig
- LEQUiA, Institute of the Environment, University of Girona. Campus Montilivi, Carrer Maria Aurèlia Capmany 69, E-17003, Girona, Spain
| | - Paolo Dessì
- LEQUiA, Institute of the Environment, University of Girona. Campus Montilivi, Carrer Maria Aurèlia Capmany 69, E-17003, Girona, Spain
| |
Collapse
|
6
|
Dessì P, Buenaño-Vargas C, Martínez-Sosa S, Mills S, Trego A, Ijaz UZ, Pant D, Puig S, O'Flaherty V, Farràs P. Microbial electrosynthesis of acetate from CO 2 in three-chamber cells with gas diffusion biocathode under moderate saline conditions. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 16:100261. [PMID: 37089695 PMCID: PMC10120373 DOI: 10.1016/j.ese.2023.100261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 02/23/2023] [Accepted: 03/10/2023] [Indexed: 05/03/2023]
Abstract
The industrial adoption of microbial electrosynthesis (MES) is hindered by high overpotentials deriving from low electrolyte conductivity and inefficient cell designs. In this study, a mixed microbial consortium originating from an anaerobic digester operated under saline conditions (∼13 g L-1 NaCl) was adapted for acetate production from bicarbonate in galvanostatic (0.25 mA cm-2) H-type cells at 5, 10, 15, or 20 g L-1 NaCl concentration. The acetogenic communities were successfully enriched only at 5 and 10 g L-1 NaCl, revealing an inhibitory threshold of about 6 g L-1 Na+. The enriched planktonic communities were then used as inoculum for 3D printed, three-chamber cells equipped with a gas diffusion biocathode. The cells were fed with CO2 gas and operated galvanostatically (0.25 or 1.00 mA cm-2). The highest production rate of 55.4 g m-2 d-1 (0.89 g L-1 d-1), with 82.4% Coulombic efficiency, was obtained at 5 g L-1 NaCl concentration and 1 mA cm-2 applied current, achieving an average acetate production of 44.7 kg MWh-1. Scanning electron microscopy and 16S rRNA sequencing analysis confirmed the formation of a cathodic biofilm dominated by Acetobacterium sp. Finally, three 3D printed cells were hydraulically connected in series to simulate an MES stack, achieving three-fold production rates than with the single cell at 0.25 mA cm-2. This confirms that three-chamber MES cells are an efficient and scalable technology for CO2 bio-electro recycling to acetate and that moderate saline conditions (5 g L-1 NaCl) can help reduce their power demand while preserving the activity of acetogens.
Collapse
Affiliation(s)
- Paolo Dessì
- School of Biological and Chemical Sciences and Energy Research Centre, Ryan Institute, University of Galway, University Road, H91 CF50, Galway, Ireland
- LEQUiA, Institute of the Environment, University of Girona, Carrer Maria Aurèlia Capmany 69, E-17003, Girona, Spain
- Corresponding author. LEQUiA, Institute of the Environment, University of Girona, Carrer Maria Aurèlia Capmany 69, E-17003, Girona, Spain.
| | - Claribel Buenaño-Vargas
- Microbiology Department, School of Natural Sciences, University of Galway, University Road, H91 TK33, Galway, Ireland
| | - Santiago Martínez-Sosa
- School of Biological and Chemical Sciences and Energy Research Centre, Ryan Institute, University of Galway, University Road, H91 CF50, Galway, Ireland
| | - Simon Mills
- Microbiology Department, School of Natural Sciences, University of Galway, University Road, H91 TK33, Galway, Ireland
| | - Anna Trego
- Microbiology Department, School of Natural Sciences, University of Galway, University Road, H91 TK33, Galway, Ireland
| | - Umer Z. Ijaz
- Infrastructure and Environment Research Division, School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Deepak Pant
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Sebastià Puig
- LEQUiA, Institute of the Environment, University of Girona, Carrer Maria Aurèlia Capmany 69, E-17003, Girona, Spain
| | - Vincent O'Flaherty
- Microbiology Department, School of Natural Sciences, University of Galway, University Road, H91 TK33, Galway, Ireland
| | - Pau Farràs
- School of Biological and Chemical Sciences and Energy Research Centre, Ryan Institute, University of Galway, University Road, H91 CF50, Galway, Ireland
| |
Collapse
|
7
|
Sapountzaki E, Rova U, Christakopoulos P, Antonopoulou I. Renewable Hydrogen Production and Storage Via Enzymatic Interconversion of CO 2 and Formate with Electrochemical Cofactor Regeneration. CHEMSUSCHEM 2023; 16:e202202312. [PMID: 37165995 DOI: 10.1002/cssc.202202312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/12/2023]
Abstract
The urgent need to reduce CO2 emissions has motivated the development of CO2 capture and utilization technologies. An emerging application is CO2 transformation into storage chemicals for clean energy carriers. Formic acid (FA), a valuable product of CO2 reduction, is an excellent hydrogen carrier. CO2 conversion to FA, followed by H2 release from FA, are conventionally chemically catalyzed. Biocatalysts offer a highly specific and less energy-intensive alternative. CO2 conversion to formate is catalyzed by formate dehydrogenase (FDH), which usually requires a cofactor to function. Several FDHs have been incorporated in bioelectrochemical systems where formate is produced by the biocathode and the cofactor is electrochemically regenerated. H2 production from formate is also catalyzed by several microorganisms possessing either formate hydrogenlyase or hydrogen-dependent CO2 reductase complexes. Combination of these two processes can lead to a CO2 -recycling cycle for H2 production, storage, and release with potentially lower environmental impact than conventional methods.
Collapse
Affiliation(s)
- Eleftheria Sapountzaki
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187, Luleå, Sweden
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187, Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187, Luleå, Sweden
| | - Io Antonopoulou
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187, Luleå, Sweden
| |
Collapse
|
8
|
Boto ST, Bardl B, Harnisch F, Rosenbaum MA. Microbial electrosynthesis with Clostridium ljungdahlii benefits from hydrogen electron mediation and permits a greater variety of products. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2023; 25:4375-4386. [PMID: 37288452 PMCID: PMC10243432 DOI: 10.1039/d3gc00471f] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/21/2023] [Indexed: 06/09/2023]
Abstract
Microbial electrosynthesis (MES) is a very promising technology addressing the challenge of carbon dioxide recycling into organic compounds, which might serve as building blocks for the (bio)chemical industry. However, poor process control and understanding of fundamental aspects such as the microbial extracellular electron transfer (EET) currently limit further developments. In the model acetogen Clostridium ljungdahlii, both direct and indirect electron consumption via hydrogen have been proposed. However, without clarification neither targeted development of the microbial catalyst nor process engineering of MES are possible. In this study, cathodic hydrogen is demonstrated to be the dominating electron source for C. ljungdahlii at electroautotrophic MES allowing for superior growth and biosynthesis, compared to previously reported MES using pure cultures. Hydrogen availability distinctly controlled an either planktonic- or biofilm-dominated lifestyle of C. ljungdahlii. The most robust operation yielded higher planktonic cell densities in a hydrogen mediated process, which demonstrated the uncoupling of growth and biofilm formation. This coincided with an increase of metabolic activity, acetate titers, and production rates (up to 6.06 g L-1 at 0.11 g L-1 d-1). For the first time, MES using C. ljungdahlii was also revealed to deliver other products than acetate in significant amounts: here up to 0.39 g L-1 glycine or 0.14 g L-1 ethanolamine. Hence, a deeper comprehension of the electrophysiology of C. ljungdahlii was shown to be key for designing and improving bioprocess strategies in MES research.
Collapse
Affiliation(s)
- Santiago T Boto
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI) Jena Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena Germany
| | - Bettina Bardl
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI) Jena Germany
| | - Falk Harnisch
- UFZ - Helmholtz-Centre for Environmental Research GmbH, Department of Environmental Microbiology Permoserstraße 15 04318 Leipzig Germany
| | - Miriam A Rosenbaum
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI) Jena Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena Germany
| |
Collapse
|
9
|
Lekshmi GS, Bazaka K, Ramakrishna S, Kumaravel V. Microbial electrosynthesis: carbonaceous electrode materials for CO 2 conversion. MATERIALS HORIZONS 2023; 10:292-312. [PMID: 36524420 DOI: 10.1039/d2mh01178f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Microbial electrosynthesis (MES) is a sustainable approach to address greenhouse gas (GHG) emissions using anthropogenic carbon dioxide (CO2) as a building block to create clean fuels and highly valuable chemicals. The efficiency of MES-based CO2 conversion is closely related to the performance of electrode material and, in particular, the cathode for which carbonaceous materials are frequently used. Compared to expensive metal electrodes, carbonaceous materials are biocompatible with a high specific surface area, wide range of possible morphologies, and excellent chemical stability, and their use can maximize the growth of bacteria and enhance electron transfer rates. Examples include MES cathodes based on carbon nanotubes, graphene, graphene oxide, graphite, graphite felt, graphitic carbon nitride (g-C3N4), activated carbon, carbon felt, carbon dots, carbon fibers, carbon brushes, carbon cloth, reticulated vitreous carbon foam, MXenes, and biochar. Herein, we review the state-of-the-art MES, including thermodynamic and kinetic processes that underpin MES-based CO2 conversion, as well as the impact of reactor type and configuration, selection of biocompatible electrolytes, product selectivity, and the use of novel methods for stimulating biomass accumulation. Specific emphasis is placed on carbonaceous electrode materials, their 3D bioprinting and surface features, and the use of waste-derived carbon or biochar as an outstanding material for further improving the environmental conditions of CO2 conversion using carbon-hungry microbes and as a step toward the circular economy. MES would be an outstanding technique to develop rocket fuels and bioderived products using CO2 in the atmosphere for the Mars mission.
Collapse
Affiliation(s)
- G S Lekshmi
- International Centre for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Lodz 90-924, Poland.
| | - Kateryna Bazaka
- School of Engineering, The Australian National University, Canberra, ACT 2601, Australia
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Centre for Nanofibers and Nanotechnology, National University of Singapore, 119077, Singapore
| | - Vignesh Kumaravel
- International Centre for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Lodz 90-924, Poland.
| |
Collapse
|
10
|
Bakonyi P, Koók L, Rózsenberszki T, Kalauz-Simon V, Bélafi-Bakó K, Nemestóthy N. CO2-refinery through microbial electrosynthesis (MES): A concise review on design, operation, biocatalysts and perspectives. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|