1
|
Zhu L, Li Z, Li Y, Liu F, Yang S. Using reverse genetics tool for study of Senecavirus A: pros and cons. Front Vet Sci 2025; 12:1546709. [PMID: 40241809 PMCID: PMC12001035 DOI: 10.3389/fvets.2025.1546709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/14/2025] [Indexed: 04/18/2025] Open
Affiliation(s)
- Lijie Zhu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Zhijuan Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yan Li
- Qingdao Center for Animal Disease Control and Prevention, Qingdao, China
| | - Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Shengnan Yang
- Qingdao Center for Animal Disease Control and Prevention, Qingdao, China
| |
Collapse
|
2
|
Chu H, Wang L, Wang J, Zhang Y, Jin N, Liu F, Li Y. Genomic profile of eGFP-tagged senecavirus A subjected to serial plaque-to-plaque transfers. Microb Pathog 2024; 191:106661. [PMID: 38657711 DOI: 10.1016/j.micpath.2024.106661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Senecavirus A (SVA) belongs to the genus Senecavirus in the family Picornaviridae. This virus possesses a positive-sense, single-stranded RNA genome, approximately 7200 nt in length, composed of a single 5' untranslated region, encoding region and 3' untranslated region. In this study, a recombinant SVA tagged with enhanced green fluorescent protein (eGFP) sequence, rSVA-eGFP, was rescued from its cDNA clone using reverse genetics. The passage-5 (P5) rSVA-eGFP was totally subjected to 55 rounds of consecutive fluorescent plaque-to-fluorescent plaque (FP-FP) transfers, and one extra common passaging in vitro. The P61 viral stock was analyzed by next-generation sequencing. The result showed ten single-nucleotide mutations (SNMs) in the rSVA-eGFP genome, including nine transitions and only one transversion. The P61 progeny still showed a complete eGFP sequence, indicating no occurrence of copy-choice recombination within the eGFP region during serial FP-FP transfers. In other words, this progeny was genetically deficient in the recombination of eGFP sequence (RES), namely, an RES-deficient strain. Out of ten SNMs, three were missense mutations, leading to single-amino acid mutations (SAAMs): F15V in L protein, A74T in VP2, and E53R in 3D protein. The E53R was predicted to be spatially adjacent to the RNA channel of 3D protein, perhaps involved in the emergence of RES-deficient strain. In conclusion, this study uncovered a global landscape of rSVA-eGFP genome after serial FP-FP transfers, and moreover shed light on a putative SAAM possibly related to the RES-deficient mechanism.
Collapse
Affiliation(s)
- Huanhuan Chu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China; College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ling Wang
- University Hospital, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jie Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Ningyi Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China; Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| | - Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Yan Li
- Qingdao Center for Animal Disease Control & Prevention, Qingdao, 266199, China.
| |
Collapse
|
3
|
Wang M, Zhao D, Li J, Zhu L, Duan X, Zhang Y, Li Y, Liu F. AAACH is a conserved motif in a cis-acting replication element that is artificially inserted into Senecavirus A genome. Virus Res 2024; 339:199269. [PMID: 37952688 PMCID: PMC10694738 DOI: 10.1016/j.virusres.2023.199269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/14/2023]
Abstract
Cis-acting replication element (cre) is required for generating a diuridylylated VPg that acts as a protein primer to initiate the synthesis of picornaviral genome or antigenome. The cre is a stem-loop structure, dependent of different picornaviruses, located in different genomic regions. The AAACA motif is highly conserved in the apical loop of cre among several picornaviral members, and plays a key role in synthesizing a diuridylylated VPg. We previously demonstrated that senecavirus A (SVA) also possesses an AAACA-containing cre in its genome. Its natural cre (Nc), if functionally inactivated through site-directed mutagenesis (SDM), would confer a lethal impact on virus recovery, whereas an artificial cre (Ac) is able to compensate for the Nc-caused functional inactivation, leading to successful rescue of a viable SVA. In this study, we constructed a set of SVA cDNA clones. Each of them contained one functionally inactivated Nc, and an extra SDM-modified Ac. Every cDNA clone had a unique SDM-modified Ac. The test of virus recovery showed that only two SVAs were rescued from their individual cDNA clones. They were AAACU- and AAACC-containing Ac genotypes. Both viruses were serially passaged in vitro for analyzing their viral characteristics. The results showed that both AAACU and AAACC genotypes were genetically stable during twenty passages, implying when the Nc was functionally inactivated, SVA could still use an AAACH-containing Ac to complete its own replication cycle.
Collapse
Affiliation(s)
- Mengyao Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Di Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jing Li
- Market Supervision Administration of Huangdao District, Qingdao, 266500, China
| | - Lijie Zhu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoxiao Duan
- Qingdao Center for Animal Disease Control & Prevention, Qingdao, 266199, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yan Li
- Qingdao Center for Animal Disease Control & Prevention, Qingdao, 266199, China.
| | - Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
4
|
Wang X, Meng H, Duan X, Sang Y, Zhang Y, Li Y, Liu F. The 3' end of the coding region of senecavirus A contains a highly conserved sequence that potentially forms a stem-loop structure required for virus rescue. Arch Virol 2023; 168:256. [PMID: 37737963 DOI: 10.1007/s00705-023-05863-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/20/2023] [Indexed: 09/23/2023]
Abstract
Senecavirus A (SVA) can cause a vesicular disease in swine. It is a positive-strand RNA virus belonging to the genus Senecavirus in the family Picornaviridae. Positive-strand RNA viruses possess positive-sense, single-stranded genomes whose untranslated regions (UTRs) have been reported to contain cis-acting RNA elements. In the present study, a total of 100 SVA isolates were comparatively analyzed at the genome level. A highly conserved fragment (HCF) was found to be located in the 3D sequence and to be close to the 3' UTR. The HCF was computationally predicted to form a stem-loop structure. Eight synonymous mutations can individually disrupt the formation of a single base pair within the stem region. We found that SVA itself was able to tolerate each of these mutations alone, as evidenced by the ability to rescue all eight single-site mutants from their individual cDNA clones, and all of them were genetically stable during serial passaging. However, the replication-competent SVA could not be rescued from another cDNA clone containing all eight mutations. The failure to recover SVA might be attributed to disruption of the predicted stem-loop structure, whereas introduction of a wild-type HCF into the cDNA clone with eight mutations still had no effect on virus recovery. These results suggest that the putative stem-loop structure at the 3' end of the 3D sequence is a cis-acting RNA element that is required for SVA growth.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Hailan Meng
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoxiao Duan
- Qingdao Center for Animal Disease Control & Prevention, Qingdao, 266199, China
| | - Yuxuan Sang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yan Li
- Qingdao Center for Animal Disease Control & Prevention, Qingdao, 266199, China.
| | - Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
5
|
Zhao D, Wang Q, Wang M, Lyu L, Liu S, Jiang Y, Zhou S, Liu F. A putative wild-type or wild-type-like hairpin structure is required within 3' untranslated region of Senecavirus A for virus replication. Virology 2023; 585:72-77. [PMID: 37307649 DOI: 10.1016/j.virol.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/14/2023]
Abstract
The 3' untranslated region (UTR) of Senecavirus A (SVA) was predicted to harbor two hairpin structures, hairpin-I and -II. The former is composed of two internal loops, one terminal loop and three stem regions; the latter comprises one internal loop, one terminal loop and two stem regions. In this study, we constructed a total of nine SVA cDNA clones, which contained different point mutations within a stem-formed motif in the hairpin-I or -II, for rescuing replication-competent viruses. Only three mutants were successfully rescued and moreover genetically stable during at least five serial passages. Computer-aided prediction showed these three mutants bearing either a wild-type or a wild-type-like hairpin-I in their individual 3' UTRs. Neither wild-type nor wild-type-like hairpin-I could be computationally predicted to exist in 3' UTRs of the other six unviable "viruses". The results suggested that the wild-type or wild-type-like hairpin-I was necessary in the 3' UTR for SVA replication.
Collapse
Affiliation(s)
- Di Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China; College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, 010018, China
| | - Qianqian Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China; College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, 010018, China
| | - Mengyao Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Liangpeng Lyu
- Qingdao Workstation of Animal Husbandry, Qingdao, 266199, China
| | - Shuqing Liu
- Qingdao Center for Animal Disease Control & Prevention, Qingdao, 266199, China
| | - Yujia Jiang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shuning Zhou
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
6
|
Meng H, Wang X, Wang L, Wang Q, Zhu L, Sang Y, Liu F. Identification of cis-acting replication element in VP2-encoding region of Senecavirus A genome. Vet Microbiol 2023; 280:109717. [PMID: 36893554 DOI: 10.1016/j.vetmic.2023.109717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Picornavirus possesses one positive-sense, single-stranded RNA genome, in which a cis-acting replication element (cre) is located. The cre is a stem-loop structure that harbors a conserved AAACA motif within its loop region. This motif functions as a template for adding two U residues to the viral VPg, therefore generating a VPg-pUpU that is required for viral RNA synthesis. Senecavirus A (SVA) is an emerging picornavirus. Its cre has not been identified as yet. In the present study, one putative cre containing a typical AAACA motif was computationally predicted to exist within the VP2-encoding sequence of SVA. To test the role of this putative cre, 22 SVA cDNA clones with different point mutations in their cre-formed sequences were constructed in an attempt to rescue replication-competent SVAs. A total of 11 viruses were rescued from their individual cDNA clones, implying that some mutated cres exerted lethal impacts on SVA replication. To eliminate these impacts, an intact cre was artificially inserted into those SVA cDNA clones without ability of recovering virus. The artificial cre was proven to be able of compensating for some, but not all, defects caused by mutated cres, leading to successful recovery of SVAs. These results indicated that the putative cre of SVA was functionally similar to those of other picornaviruses, perhaps involved in the uridylylation of VPg.
Collapse
Affiliation(s)
- Hailan Meng
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaoli Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Ling Wang
- University Hospital, Qingdao Agricultural University, Qingdao 266109, China
| | - Qianqian Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China; College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010011, China
| | - Lijie Zhu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuxuan Sang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
7
|
Wang Q, Zhao D, Wang L, Sang Y, Meng H, Wang Q, Shan H, Liu F, Geri L. Translation of Senecavirus A polyprotein is initiated from the IRES-proximal initiation codon. Virology 2023; 579:67-74. [PMID: 36608596 DOI: 10.1016/j.virol.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/31/2022]
Abstract
To clarify whether Senecavirus A (SVA) has the potential of alternative translation, an extra G residue was inserted into an SVA cDNA clone, resultantly generating an "AUGAUG" motif. The second AUG is the authentic SVA initiation codon, whereas the first AUG is a putative one. Subsequently, eighteen nucleotides were inserted one by one between AUG and AUG for reconstructing cDNA clones. The test of virus recovery showed that three replication-competent SVAs, whose AUG/AUG-flanked sequences were not multiples of three nucleotides, were successfully rescued from their individual cDNA clones. The wild-type SVA possesses a UUUUU motif within the polyprotein-encoding region. Sanger sequencing showed that these three replication-competent SVAs harbored one or two extra U residues in the UUUUU motif, implying that polyprotein translation was initiated from the putative AUG, and the authentic AUG would be inactivated. This is probably attributed to the lack of ribosome scanning along an SVA genome.
Collapse
Affiliation(s)
- Qianqian Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010011, China
| | - Di Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ling Wang
- University Hospital, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuxuan Sang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hailan Meng
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qi Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hu Shan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Letu Geri
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010011, China.
| |
Collapse
|