1
|
Liu W, Yuan T, Wang M, Liu J. Analysis of the Changes in Diversity of Culturable Bacteria in Different Niches of Mulberry Fields and Assessment of Their Plant Growth-Promoting Potential. Microorganisms 2025; 13:1012. [PMID: 40431185 PMCID: PMC12114483 DOI: 10.3390/microorganisms13051012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 03/28/2025] [Accepted: 04/08/2025] [Indexed: 05/29/2025] Open
Abstract
Microorganisms play a crucial role in agricultural systems. The use of plant growth-promoting bacteria (PGPB) to enhance agricultural production in a sustainable and environmentally friendly manner has been widely recognized as a key technology for the future. In this study, we analyzed the diversity changes of bacteria in different ecological niches of mulberry fields based on culture-dependent methods, and we further evaluated their antibacterial and plant growth-promoting (PGP) activities. A total of 346 cultivable bacteria belonging to 30 genera were isolated from mulberry rhizosphere soil, mulberry plants and silkworm intestines, among which the dominant genera were Bacillus, Pseudomonas, and Enterobacter. The bacterial communities in the mulberry rhizosphere soil were more diverse than those in the mulberry endophytes and in the silkworm intestines. The antibacterial test showed that 30 bacteria exhibited antibacterial activity against the plant pathogen Ralstonia solanacearum. PGP trait assays indicated that 58 bacteria were capable of nitrogen fixation, phosphate solubilization, potassium release and siderophore production simultaneously. The screened functional strains promoted the growth of mulberry saplings. The results of this study highlight new findings on the application of silkworm intestinal bacteria in PGPB.
Collapse
Affiliation(s)
| | | | | | - Jiping Liu
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Regional Sericulture Training Center for Asia-Pacific, Guangzhou 510642, China; (W.L.); (T.Y.); (M.W.)
| |
Collapse
|
2
|
da Silva Bandeira ON, da Silva Bandeira R, de Souza CRB. Systematic review and meta-analysis of the potential effects of endophytic bacteria Klebsiella on plant growth promotion and biocontrol of pathogens. World J Microbiol Biotechnol 2025; 41:89. [PMID: 40021542 DOI: 10.1007/s11274-025-04300-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/18/2025] [Indexed: 03/03/2025]
Abstract
Klebsiella is a bacterial genus widely recognized in the medical field but with underexplored potential in agriculture. This study employed a systematic review and meta-analysis to investigate scientific articles on plant growth promotion effects associated with endophytic bacteria Klebsiella species. A total of 39 relevant studies, published between 2012 and 2024, were identified based on strict inclusion and exclusion criteria. The analysis revealed that Klebsiella sp., K. pneumoniae, and K. variicola are cosmopolitan species that have functional versatility in phytohormone production, nutrient solubilization, and pathogen control in agricultural systems in both tropical and temperate zones. The data showed a significant correlation between the use of Klebsiella sp. and plant growth, highlighting the positive impact of these species in controlling aggressive pathogens. These findings underscore the potential of Klebsiella as a biotechnological tool for sustainable agricultural practices, enhancing plant growth and reducing the reliance on chemical inputs. The study further emphasizes the need for future research to deepen genomic characterization and expand the agricultural applications of these bacteria.
Collapse
|
3
|
Xin L, Chen Y, Rong W, Qin Y, Li X, Guan D. Gut Microbiota Analysis in Silkworms ( Bombyx mori) Provides Insights into Identifying Key Bacterials for Inclusion in Artificial Diet Formulations. Animals (Basel) 2024; 14:1261. [PMID: 38731265 PMCID: PMC11083763 DOI: 10.3390/ani14091261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
The gut microbiome significantly influences the health and productivity of silkworms (Bombyx mori), the cornerstone of sericulture. With the increasing use of cost-effective artificial diets in sericulture, it is crucial to understand how these diets impact the silkworm gut microbiomes. Here we employed 16S rRNA sequencing to delineate the impact of three distinct dietary regimens on the silkworm gut microbiomes: exclusive mulberry leaf diet (SY), exclusive artificial feed diet (SL), and a sequential transition from artificial feed to mulberry leaves (ZS). Our results unveiled stark differences in microbial diversity across the groups, with the ZS group displaying an intermediary complexity. LefSe and random forest analyses identified Methylobacteriaceae, Microbacterium, and Rhodococcus as significantly enriched in the ZS group, suggesting their potential to facilitate silkworms' adaptation to dietary transitions. Functional profiling revealed differential pathway regulation, indicating a metabolic reconfiguration in response to dietary modulations. Notably, the enrichment of Lactobacillus and Weissella in both the SL and ZS groups highlights their potential as probiotics in artificial diets. Our findings provide insights into the diet adaptation mechanisms of silkworm gut microbiota, paving the way for harnessing the intestinal bacteria to enhance silkworm health and silk production through targeted microbial interventions in sericulture practices.
Collapse
Affiliation(s)
- Lei Xin
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (L.X.); (Y.C.); (W.R.); (Y.Q.)
- Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China
| | - Yazhen Chen
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (L.X.); (Y.C.); (W.R.); (Y.Q.)
- Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China
| | - Wantao Rong
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (L.X.); (Y.C.); (W.R.); (Y.Q.)
- Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China
| | - Yingcan Qin
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (L.X.); (Y.C.); (W.R.); (Y.Q.)
- Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China
| | - Xiaodong Li
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (L.X.); (Y.C.); (W.R.); (Y.Q.)
- Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China
| | - Delong Guan
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (L.X.); (Y.C.); (W.R.); (Y.Q.)
- Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China
| |
Collapse
|
4
|
Jiao W, Wen J, Li N, Ou T, Qiu C, Ji Y, Lin K, Liu X, Xie J. The biocontrol potentials of rhizospheric bacterium Bacillus velezensis K0T24 against mulberry bacterial wilt disease. Arch Microbiol 2024; 206:213. [PMID: 38616201 DOI: 10.1007/s00203-024-03935-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
Mulberry bacterial wilt disease, caused by Ralstonia pseudosolanacearum, is a devastating soil-borne disease in the silk-mulberry-related industry. In this study, through high-throughput sequencing, we compared the rhizosphere bacterial composition of the mulberry-resistant cultivar (K10) and susceptible cultivar (G12), confirming Bacillus as a genus-level biomarker for K10. Next, twelve Bacillus spp. isolates, derived from the rhizosphere of K10, were screened for their antagonistic activity against R. pseudosolanacearum. The isolate showing strong antagonism was identified as B. velezensis K0T24 and selected for further analysis. The fermentation supernatant of B. velezensis K0T24 significantly inhibited the growth of R. pseudosolanacearum (82.47%) and the expression of its pathogenic genes. Using B. velezensis K0T24 in mulberry seedlings also increased defense enzyme activities and achieved a control efficacy of up to 55.17% against mulberry bacterial wilt disease. Collectively, our findings demonstrate the potential of B. velezensis K0T24 in suppressing mulberry bacterial wilt disease.
Collapse
Affiliation(s)
- Wenlian Jiao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Ju Wen
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Na Li
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Ting Ou
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Changyu Qiu
- Guangxi Key Laboratory of Sericultural Genetic Improvement and Efficient Breeding, Guangxi Zhuang Autonomous Region Sericultural Technology Promotion Station, Nanning, Guangxi Zhuang Autonomous Region, 530007, China
| | - Yutong Ji
- Westa College, Southwest University, Chongqing, 400715, China
| | - Kai Lin
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Xiaojiao Liu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing, 400715, China.
| | - Jie Xie
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing, 400715, China.
- Westa College, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
5
|
Ou T, Zhang M, Gao H, Wang F, Xu W, Liu X, Wang L, Wang R, Xie J. Study on the Potential for Stimulating Mulberry Growth and Drought Tolerance of Plant Growth-Promoting Fungi. Int J Mol Sci 2023; 24:ijms24044090. [PMID: 36835498 PMCID: PMC9966926 DOI: 10.3390/ijms24044090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Drought stress often leads to heavy losses in mulberry planting, especially for fruits and leaves. Application of plant growth-promoting fungi (PGPF) endows various plant beneficial traits to overcome adverse environmental conditions, but little is known about the effects on mulberry under drought stress. In the present study, we isolated 64 fungi from well-growing mulberry trees surviving periodical drought stress, and Talaromyces sp. GS1, Pseudeurotium sp. GRs12, Penicillium sp. GR19, and Trichoderma sp. GR21 were screened out due to their strong potential in plant growth promotion. Co-cultivation assay revealed that PGPF stimulated mulberry growth, exhibiting increased biomass and length of stems and roots. Exogenous application of PGPF could alter fungal community structures in the rhizosphere soils, wherein Talaromyces was obviously enhanced after inoculation of Talaromyces sp. GS1, and Peziza was increased in the other treatments. Moreover, PGPF could promote iron and phosphorus absorption of mulberry as well. Additionally, the mixed suspensions of PGPF induced the production of catalase, soluble sugar, and chlorophyll, which in turn enhanced the drought tolerance of mulberry and accelerated their growth recovery after drought. Collectively, these findings might provide new insights into improving mulberry drought tolerance and further boosting mulberry fruit yields by exploiting interactions between hosts and PGPF.
Collapse
|