1
|
Wu Y, Wu Z, Guo L, Shao J, Xiao H, Yang M, Deng C, Zhang Y, Zhang Z, Zhao Y. Diversity and distribution of a prevalent Microviridae group across the global oceans. Commun Biol 2024; 7:1377. [PMID: 39443614 PMCID: PMC11499846 DOI: 10.1038/s42003-024-07085-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
Small single-stranded DNA phages of the Microviridae family are diverse and prevalent in oceans. Our understanding of Microviridae phages that infect the ecologically important marine Roseobacter is currently limited, comprising few isolates. Here, we report six roseophages that infect Roseobacter RCA strains. Genomic and phylogenetic analyses revealed that they were new members of the previously identified subfamily Occultatumvirinae. Additionally, 232 marine uncultivated virus genomes (UViGs) affiliated to Occultatumvirinae were obtained from environmental genome datasets. Phylogenomic analysis revealed that marine Occultatumvirinae phages could be further grouped into 11 subgroups. Moreover, meta-omics based read-mapping analysis showed that Occultatumvirinae phages were globally distributed, with two low G + C subgroups showing the most prevalent distribution. Furthermore, one phage in subgroup 2 was found to be extremely ubiquitous. Overall, this study expands our understanding of the diversity and ecology of the Occultatumvirinae microviruses in the ocean and highlights their ecological impacts.
Collapse
Affiliation(s)
- Ying Wu
- College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zuqing Wu
- College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Luyuan Guo
- College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiabing Shao
- College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hang Xiao
- College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mingyu Yang
- College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chunmei Deng
- College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yahui Zhang
- College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zefeng Zhang
- College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Yanlin Zhao
- College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou, China.
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
2
|
Bermudez-Rivera B, Hampton B, Wheeler C, Vargas J, Swaminathan S, Driver EM, Halden RU, Varsani A, Scotch M, Faleye TOC. Nine Rhizobium phage genomes recovered from wastewater in Tempe, AZ, October 2019-March 2020. Microbiol Resour Announc 2024; 13:e0068024. [PMID: 39297635 PMCID: PMC11465841 DOI: 10.1128/mra.00680-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/16/2024] [Indexed: 10/11/2024] Open
Abstract
We describe nine Rhizobium microvirus genomes identified in wastewater in Tempe, AZ, USA, between October 2019 and March 2020. The major capsid protein (MCP) encoded in these genomes phylogenetically cluster together and are distinct from the MCPs of Rhizobium microviruses identified in Mexico and Argentina.
Collapse
Affiliation(s)
- Brenda Bermudez-Rivera
- Biodesign Institute, Center for Environmental Health Engineering, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Brooklyn Hampton
- Biodesign Institute, Center for Environmental Health Engineering, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Cian Wheeler
- Biodesign Institute, Center for Environmental Health Engineering, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Jacqueline Vargas
- Biodesign Institute, Center for Environmental Health Engineering, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Srivatsan Swaminathan
- Biodesign Institute, Center for Environmental Health Engineering, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Erin M. Driver
- Biodesign Institute, Center for Environmental Health Engineering, Arizona State University, Tempe, Arizona, USA
| | - Rolf U. Halden
- Biodesign Institute, Center for Environmental Health Engineering, Arizona State University, Tempe, Arizona, USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, USA
- OneWaterOneHealth, Nonprofit Project of the Arizona State University Foundation, Tempe, Arizona, USA
| | - Arvind Varsani
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Matthew Scotch
- Biodesign Institute, Center for Environmental Health Engineering, Arizona State University, Tempe, Arizona, USA
- College of Health Solutions, Arizona State University, Tempe, Arizona, USA
| | - Temitope O. C. Faleye
- Biodesign Institute, Center for Environmental Health Engineering, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
3
|
Torres-Quintero MC, Santamaría RI, Martínez-Flores I, Bustos P, Girard L, Cevallos MÁ, Rodríguez-Sánchez C, González V. Role of core lipopolysaccharide biosynthetic genes in the infection and adsorption of broad-host-range bacteriophages of Rhizobium etli. Microbiol Res 2024; 285:127766. [PMID: 38788349 DOI: 10.1016/j.micres.2024.127766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
In this study, we examined the role of the lipopolysaccharide (LPS) core of Rhizobium etli in facilitating the adsorption and infection of phages with broad host range. When the plasmid-encoded LPS biosynthesis genes, wreU and wreV, were disrupted, distinct and contrasting effects on phage infection were observed. The wreU mutant strains exhibited wild-type adsorption and infection properties, whereas the wreV mutant demonstrated resistance to phage infection, but retained the capacity to adsorb phages. Complementation of the wreV mutant strains with a recombinant plasmid containing the wreU and wreV, restored the susceptibility to the phages. However, the presence of this recombinant plasmid in a strain devoid of the native lps-encoding plasmid was insufficient to restore phage susceptibility. These results suggest that the absence of wreV impedes the proper assembly of the complete LPS core, potentially affecting the formation of UDP-KdgNAg or KDO precursors for the O-antigen. In addition, a protein not yet identified, but residing in the native lps-encoding plasmid, may be necessary for complete phage infection.
Collapse
Affiliation(s)
- Mary Carmen Torres-Quintero
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, UNAM, Av. Universidad s/n, Col. Chamilpa C.P. 62212, Cuernavaca, Mor, Apdo 565-A, Mexico
| | - Rosa Isela Santamaría
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, UNAM, Av. Universidad s/n, Col. Chamilpa C.P. 62212, Cuernavaca, Mor, Apdo 565-A, Mexico
| | - Irma Martínez-Flores
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, UNAM, Av. Universidad s/n, Col. Chamilpa C.P. 62212, Cuernavaca, Mor, Apdo 565-A, Mexico
| | - Patricia Bustos
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, UNAM, Av. Universidad s/n, Col. Chamilpa C.P. 62212, Cuernavaca, Mor, Apdo 565-A, Mexico
| | - Lourdes Girard
- Programa de Microbiología Genómica, Centro de Ciencias Genómicas, UNAM, Av. Universidad s/n, Col. Chamilpa C.P. 62212, Cuernavaca, Mor, Apdo 565-A, Mexico
| | - Miguel Ángel Cevallos
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, UNAM, Av. Universidad s/n, Col. Chamilpa C.P. 62212, Cuernavaca, Mor, Apdo 565-A, Mexico
| | - César Rodríguez-Sánchez
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, UNAM, Av. Universidad s/n, Col. Chamilpa C.P. 62212, Cuernavaca, Mor, Apdo 565-A, Mexico
| | - Víctor González
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, UNAM, Av. Universidad s/n, Col. Chamilpa C.P. 62212, Cuernavaca, Mor, Apdo 565-A, Mexico.
| |
Collapse
|
4
|
Mäkelä K, Laanto E, Sundberg LR. Determinants in the phage life cycle: The dynamic nature of ssDNA phage FLiP and host interactions under varying environmental conditions and growth phases. Environ Microbiol 2024; 26:e16670. [PMID: 38952172 DOI: 10.1111/1462-2920.16670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/24/2024] [Indexed: 07/03/2024]
Abstract
The influence of environmental factors on the interactions between phages and bacteria, particularly single-stranded DNA (ssDNA) phages, has been largely unexplored. In this study, we used Finnlakevirus FLiP, the first known ssDNA phage species with a lipid membrane, as our model phage. We examined the infectivity of FLiP with three Flavobacterium host strains, B330, B167 and B114. We discovered that FLiP infection is contingent on the host strain and conditions such as temperature and bacterial growth phase. FLiP can infect its hosts across a wide temperature range, but optimal phage replication varies with each host. We uncovered some unique aspects of phage infectivity: FLiP has limited infectivity in liquid-suspended cells, but it improves when cells are surface-attached. Moreover, FLiP infects stationary phase B167 and B114 cells more rapidly and efficiently than exponentially growing cells, a pattern not observed with the B330 host. We also present the first experimental evidence of endolysin function in ssDNA phages. The activity of FLiP's lytic enzymes was found to be condition-dependent. Our findings underscore the importance of studying phage ecology in contexts that are relevant to the environment, as both the host and the surrounding conditions can significantly alter the outcome of phage-host interactions.
Collapse
Affiliation(s)
- Kati Mäkelä
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Elina Laanto
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Lotta-Riina Sundberg
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
5
|
Nguyen HM, Watanabe S, Sharmin S, Kawaguchi T, Tan XE, Wannigama DL, Cui L. RNA and Single-Stranded DNA Phages: Unveiling the Promise from the Underexplored World of Viruses. Int J Mol Sci 2023; 24:17029. [PMID: 38069353 PMCID: PMC10707117 DOI: 10.3390/ijms242317029] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
RNA and single-stranded DNA (ssDNA) phages make up an understudied subset of bacteriophages that have been rapidly expanding in the last decade thanks to advancements in metaviromics. Since their discovery, applications of genetic engineering to ssDNA and RNA phages have revealed their immense potential for diverse applications in healthcare and biotechnology. In this review, we explore the past and present applications of this underexplored group of phages, particularly their current usage as therapeutic agents against multidrug-resistant bacteria. We also discuss engineering techniques such as recombinant expression, CRISPR/Cas-based genome editing, and synthetic rebooting of phage-like particles for their role in tailoring phages for disease treatment, imaging, biomaterial development, and delivery systems. Recent breakthroughs in RNA phage engineering techniques are especially highlighted. We conclude with a perspective on challenges and future prospects, emphasizing the untapped diversity of ssDNA and RNA phages and their potential to revolutionize biotechnology and medicine.
Collapse
Affiliation(s)
- Huong Minh Nguyen
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan; (H.M.N.); (S.W.); (S.S.); (T.K.); (X.-E.T.)
| | - Shinya Watanabe
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan; (H.M.N.); (S.W.); (S.S.); (T.K.); (X.-E.T.)
| | - Sultana Sharmin
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan; (H.M.N.); (S.W.); (S.S.); (T.K.); (X.-E.T.)
| | - Tomofumi Kawaguchi
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan; (H.M.N.); (S.W.); (S.S.); (T.K.); (X.-E.T.)
| | - Xin-Ee Tan
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan; (H.M.N.); (S.W.); (S.S.); (T.K.); (X.-E.T.)
| | - Dhammika Leshan Wannigama
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata 990-2292, Yamagata, Japan;
| | - Longzhu Cui
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan; (H.M.N.); (S.W.); (S.S.); (T.K.); (X.-E.T.)
| |
Collapse
|
6
|
Van Cauwenberghe J, Simms EL. How might bacteriophages shape biological invasions? mBio 2023; 14:e0188623. [PMID: 37812005 PMCID: PMC10653932 DOI: 10.1128/mbio.01886-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023] Open
Abstract
Invasions by eukaryotes dependent on environmentally acquired bacterial mutualists are often limited by the ability of bacterial partners to survive and establish free-living populations. Focusing on the model legume-rhizobium mutualism, we apply invasion biology hypotheses to explain how bacteriophages can impact the competitiveness of introduced bacterial mutualists. Predicting how phage-bacteria interactions affect invading eukaryotic hosts requires knowing the eco-evolutionary constraints of introduced and native microbial communities, as well as their differences in abundance and diversity. By synthesizing research from invasion biology, as well as bacterial, viral, and community ecology, we create a conceptual framework for understanding and predicting how phages can affect biological invasions through their effects on bacterial mutualists.
Collapse
Affiliation(s)
- Jannick Van Cauwenberghe
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Ellen L. Simms
- Department of Integrative Biology, University of California, Berkeley, California, USA
| |
Collapse
|
7
|
Abstract
Two decades of metagenomic analyses have revealed that in many environments, small (∼5 kb), single-stranded DNA phages of the family Microviridae dominate the virome. Although the emblematic microvirus phiX174 is ubiquitous in the laboratory, most other microviruses, particularly those of the gokushovirus and amoyvirus lineages, have proven to be much more elusive. This puzzling lack of representative isolates has hindered insights into microviral biology. Furthermore, the idiosyncratic size and nature of their genomes have resulted in considerable misjudgments of their actual abundance in nature. Fortunately, recent successes in microvirus isolation and improved metagenomic methodologies can now provide us with more accurate appraisals of their abundance, their hosts, and their interactions. The emerging picture is that phiX174 and its relatives are rather rare and atypical microviruses, and that a tremendous diversity of other microviruses is ready for exploration.
Collapse
Affiliation(s)
- Paul C Kirchberger
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA;
| | - Howard Ochman
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
8
|
Chapman AR, Wright JM, Kaiser NA, Jones PM, Driver EM, Halden RU, Varsani A, Scotch M, Faleye TOC. Rhizobium Phage-Like Microvirus Genome Sequence Identified in Wastewater in Arizona, USA, in November 2020 Encodes an Endolysin and a Putative Multiheme Cytochrome c-like Protein. Microbiol Resour Announc 2023; 12:e0006923. [PMID: 37098909 PMCID: PMC10190252 DOI: 10.1128/mra.00069-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/13/2023] [Indexed: 04/27/2023] Open
Abstract
We describe the genome (4,696 nucleotides [GC content, 56%; coverage, 3,641×) of MAZ-Nov-2020, a microvirus identified from municipal wastewater in Maricopa County, Arizona, USA, in November 2020. The MAZ-Nov-2020 genome encodes major capsid protein, endolysin, replication initiator protein, and two hypothetical proteins, one of which was predicted to likely be a membrane-associated multiheme cytochrome c.
Collapse
Affiliation(s)
- Ainsley R. Chapman
- Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, Arizona, USA
| | - Jillian M. Wright
- Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, Arizona, USA
| | - Nicole A. Kaiser
- Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, Arizona, USA
| | - Peter M. Jones
- University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, USA
| | - Erin M. Driver
- Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, Arizona, USA
| | - Rolf U. Halden
- Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, Arizona, USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, USA
- OneWaterOneHealth, Arizona State University Foundation, Tempe, Arizona, USA
| | - Arvind Varsani
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Matthew Scotch
- Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, Arizona, USA
- College of Health Solutions, Arizona State University, Tempe, Arizona, USA
| | - Temitope O. C. Faleye
- Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|