1
|
Yan T, Wang Z, Li R, Zhang D, Song Y, Cheng Z. Gyrovirus: current status and challenge. Front Microbiol 2024; 15:1449814. [PMID: 39220040 PMCID: PMC11362077 DOI: 10.3389/fmicb.2024.1449814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Gyrovirus (GyV) is small, single-stranded circular DNA viruses that has recently been assigned to the family Anelloviridae. In the last decade, many GyVs that have an apparent pan-tropism at the host level were identified by high-throughput sequencing (HTS) technology. As of now, they have achieved global distribution. Several species of GyVs have been demonstrated to be pathogenic to poultry, particularly chicken anemia virus (CAV), causing significant economic losses to the global poultry industry. Although GyVs are highly prevalent in various birds worldwide, their direct involvement in the etiology of specific diseases and the reasons for their ubiquity and host diversity are not fully understood. This review summarizes current knowledge about GyVs, with a major emphasis on their morphofunctional properties, epidemiological characteristics, genetic evolution, pathogenicity, and immunopathogenesis. Additionally, the association between GyVs and various diseases, as well as its potential impact on the poultry industry, have been discussed. Future prevention and control strategies have also been explored. These insights underscore the importance of conducting research to establish a virus culture system, optimize surveillance, and develop vaccines for GyVs.
Collapse
Affiliation(s)
| | | | | | | | | | - Ziqiang Cheng
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
2
|
Xu H, Li W, Nie Y, Chen S, Li H, Zhang X, Xie Q, Chen W. Synergy of Subgroup J Avian Leukosis Virus and Chicken Infectious Anemia Virus Enhances the Pathogenicity in Chickens. Microorganisms 2024; 12:740. [PMID: 38674684 PMCID: PMC11052190 DOI: 10.3390/microorganisms12040740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Subgroup J avian leukemia virus (ALV-J) and chicken infectious anemia virus (CIAV) are widely acknowledged as significant immunosuppressive pathogens that commonly co-infect chickens, causing substantial economic losses in the poultry industry. However, whether co-infection of ALV-J and CIAV have synergistic pathogenicity remains uncertain. To explore their synergistic pathogenesis, we established a co-infection model of ALV-J and CIAV in HD11 cells and specific-pathogen-free (SPF) chickens. We discovered that ALV-J and CIAV can synergistically promote the secretion of IL-6, IL-10, IFN-α, and IFN-γ and apoptosis in HD11 cells. In vivo, compared to the ALV-J and CIAV mono-infected group, the mortality increased significantly by 27% (20 to 47%) and 14% (33 to 47%) in the co-infected group, respectively. We also discovered that ALV-J and CIAV synergistically inhibited weight gain and exhibited more severe organ damage in co-infected chickens. Furthermore, we found that CIAV can promote the replication of ALV-J in HD11 cells and significantly enhance ALV-J viral load in blood and tissues of co-infected chickens, but ALV-J cannot promote the replication of CIAV. Moreover, by measuring the immune organ indexes and proportions of blood CD3+CD4+ and CD3+CD8+ lymphocytes, more serious instances of immunosuppression were observed in ALV-J and CIAV co-infected chickens than in mono-infected chickens. Taken together, our findings demonstrate that ALV-J and CIAV synergistically enhance pathogenicity and immunosuppression.
Collapse
Affiliation(s)
- Huijuan Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (H.X.); (W.L.); (Y.N.); (S.C.); (H.L.); (X.Z.)
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, China
| | - Wenxue Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (H.X.); (W.L.); (Y.N.); (S.C.); (H.L.); (X.Z.)
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Yu Nie
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (H.X.); (W.L.); (Y.N.); (S.C.); (H.L.); (X.Z.)
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, China
| | - Sheng Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (H.X.); (W.L.); (Y.N.); (S.C.); (H.L.); (X.Z.)
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, China
| | - Hongxin Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (H.X.); (W.L.); (Y.N.); (S.C.); (H.L.); (X.Z.)
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, China
- Heyuan Branch, Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Heyuan 517001, China
| | - Xinheng Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (H.X.); (W.L.); (Y.N.); (S.C.); (H.L.); (X.Z.)
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, China
- Heyuan Branch, Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Heyuan 517001, China
| | - Qingmei Xie
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (H.X.); (W.L.); (Y.N.); (S.C.); (H.L.); (X.Z.)
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, China
- Heyuan Branch, Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Heyuan 517001, China
| | - Weiguo Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (H.X.); (W.L.); (Y.N.); (S.C.); (H.L.); (X.Z.)
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, China
- Heyuan Branch, Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Heyuan 517001, China
| |
Collapse
|