1
|
Wong ELY, Valim HF, Schmitt I. Genome-wide differentiation corresponds to climatic niches in two species of lichen-forming fungi. Environ Microbiol 2024; 26:e16703. [PMID: 39388227 DOI: 10.1111/1462-2920.16703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/15/2024] [Indexed: 10/12/2024]
Abstract
Lichens can withstand fluctuating environmental conditions such as hydration-desiccation cycles. Many species distribute across climate zones, suggesting population-level adaptations to conditions such as freezing and drought. Here, we aim to understand how climate affects population genomic patterns in lichenized fungi. We analysed population structure along elevational gradients in closely related Umbilicaria phaea (North American; two gradients) and Umbilicaria pustulata (European; three gradients). All gradients showed clear genomic breaks splitting populations into low-elevation (Mediterranean zone) and high-elevation (cold temperate zone). A total of 3301 SNPs in U. phaea and 138 SNPs in U. pustulata were driven to fixation between the two ends of the gradients. The difference between the species is likely due to differences in recombination rate: the sexually reproducing U. phaea has a higher recombination rate than the primarily asexually reproducing U. pustulata. Cline analysis revealed allele frequency transitions along all gradients at approximately 0°C, coinciding with the transition between the Mediterranean and cold temperate zones, suggesting freezing is a strong driver of population differentiation. Genomic scans further confirmed temperature-related selection targets. Both species showed similar differentiation patterns overall, but different selected alleles indicate convergent adaptation to freezing. Our results enrich our knowledge of fungal genomic functions related to temperature and climate, fungal population genomics, and species responses to environmental heterogeneity.
Collapse
Affiliation(s)
- Edgar L Y Wong
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Henrique F Valim
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Imke Schmitt
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| |
Collapse
|
2
|
Wang Y, Zhang Y, Li R, Qian B, Du X, Qiu X, Chen M, Shi G, Wei J, Wei XL, Wu Q. Exploration on cold adaptation of Antarctic lichen via detection of positive selection genes. IMA Fungus 2024; 15:29. [PMID: 39252145 PMCID: PMC11386357 DOI: 10.1186/s43008-024-00160-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/19/2024] [Indexed: 09/11/2024] Open
Abstract
Lichen as mutualistic symbiosis is the dominant organism in various extreme terrestrial environment on Earth, however, the mechanisms of their adaptation to extreme habitats have not been fully elucidated. In this study, we chose the Antarctic dominant lichen species Usnea aurantiacoatra to generate a high-quality genome, carried out phylogenetic analysis using maximum likelihood and identify genes under positive selection. We performed functional enrichment analysis on the positively selected genes (PSGs) and found that most of the PSGs focused on transmembrane transporter activity and vacuole components. This suggest that the genes related to energy storage and transport in Antarctic U. aurantiacoatra were affected by environmental pressure. Inside of the 86 PSGs screened, two protein interaction networks were identified, which were RNA helicase related proteins and regulator of G-protein signaling related proteins. The regulator of the G-protein signaling gene (UaRGS1) was chosen to perform further verification by the lichen genetic manipulation system Umbilicaria muhlenbergii. Given that the absence of UmRgs1 resulted in elevated lethality to cold shock, the role for UaRgs1 in Antarctic U. aurantiacoatra resistance to cold can be inferred. The investigation of lichen adaptation to extreme environments at the molecular level will be opened up.
Collapse
Affiliation(s)
- Yanyan Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaran Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rong Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- School of Life Sciences, Yunnan University, Kunming, 650500, China
| | - Ben Qian
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Du
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xuyun Qiu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengmeng Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guohui Shi
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiangchun Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin-Li Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Qi Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Valim HF, Grande FD, Wong ELY, Schmitt I. Circadian clock- and temperature-associated genes contribute to overall genomic differentiation along elevation in lichenized fungi. Mol Ecol 2024; 33:e17252. [PMID: 38146927 DOI: 10.1111/mec.17252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 11/24/2023] [Accepted: 12/11/2023] [Indexed: 12/27/2023]
Abstract
Circadian regulation is linked to local environmental adaptation, and many species with broad climatic niches display variation in circadian genes. Here, we hypothesize that lichenizing fungi occupying different climate zones tune their metabolism to local environmental conditions with the help of their circadian systems. We study two species of the genus Umbilicaria occupying similar climatic niches (Mediterranean and the cold temperate) in different continents. Using homology to Neurospora crassa genes, we identify gene sets associated with circadian rhythms (11 core, 39 peripheral genes) as well as temperature response (37 genes). Nucleotide diversity of these genes is significantly correlated with mean annual temperature, minimum temperature of the coldest month and mean temperature of the coldest quarter. Furthermore, we identify altitudinal clines in allele frequencies in several non-synonymous substitutions in core clock components, for example, white collar-like, frh-like and various ccg-like genes. A dN/dS approach revealed a few significant peripheral clock- and temperature-associated genes (e.g. ras-1-like, gna-1-like) that may play a role in fine-tuning the circadian clock and temperature-response machinery. An analysis of allele frequency changes demonstrated the strongest evidence for differentiation above the genomic background in the clock-associated genes in U. pustulata. These results highlight the likely relevance of the circadian clock in environmental adaptation, particularly frost tolerance, of lichens. Whether or not the fungal clock modulates the symbiotic interaction within the lichen consortium remains to be investigated. We corroborate the finding of genetic variation in clock components along altitude-not only latitude-as has been reported in other species.
Collapse
Affiliation(s)
- Henrique F Valim
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Francesco Dal Grande
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
- Department of Biology, University of Padova, Padua, Italy
| | - Edgar L Y Wong
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|