1
|
Fernández-García L, Garcia-Blanco MA. Host RNA-binding proteins and specialized viral RNA translation mechanisms: Potential antiviral targets. Antiviral Res 2025; 237:106142. [PMID: 40089163 DOI: 10.1016/j.antiviral.2025.106142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/02/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
RNA-binding proteins (RBPs) are the key regulators of the metabolism of RNA, from its genesis to its degradation. Qualitative and quantitative alterations of RBPs, including their post-translational modifications, impact cellular physiology and are associated with disease processes. Many cellular RBPs also play essential roles in the replication of viruses, especially RNA viruses, which, as obligatory parasites, rely on the host cell's biosynthetic and structural machinery. Viral protein synthesis is a key step in viral lifecycles and critically depends on host RBPs. In many cases, the translation of viral mRNAs employs specialized mechanisms that give viral mRNAs advantages over cellular RNAs. Host RBPs regulate these specialized mechanisms. In this work, we review the role of RBPs in specialized viral RNA translation, focusing on these RBPs as potential antiviral drug targets.
Collapse
Affiliation(s)
- Leandro Fernández-García
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, 22908, USA; Center for RNA Science and Medicine, University of Virginia, Charlottesville, VA, 22908, USA.
| | - Mariano A Garcia-Blanco
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, 22908, USA; Center for RNA Science and Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| |
Collapse
|
2
|
Ortiz-Hernández R, Millán-Casarrubias EJ, Bolaños J, Munguía-Robledo S, Vázquez-Calzada C, Azuara-Licéaga E, Valdés J, Rodríguez MA. PRMT5 Inhibitor EPZ015666 Decreases the Viability and Encystment of Entamoeba invadens. Molecules 2024; 30:62. [PMID: 39795118 PMCID: PMC11721204 DOI: 10.3390/molecules30010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Protein arginine methyltransferase 5 (PRMT5) is an enzyme that produces monomethyl arginine (MMA) and symmetric dimethyl arginine (sDMA), post-translational modifications that regulate several cellular processes, including stage conversion in parasitic protozoans. Entamoeba histolytica, the etiologic agent of human amebiasis, has two stages in its life cycle, the trophozoite, which is the replicative form, and the cyst, corresponding to the infective phase. The study of the molecular mechanisms that regulate differentiation in this parasite has been overdue because of a lack of efficient protocols for in vitro encystment. For this reason, Entamoeba invadens, a parasite of reptiles, has been used as a differentiation model system for the genus. Here, we demonstrated the presence of sDMA in E. invadens, which increases during encystment, and identified the PRMT5 of this microorganism (EiPRMT5). In addition, we performed 3D modeling of this enzyme, as well as its molecular docking with the PRMT5 inhibitor EPZ015666, which predicted the affinity of the drug for the active site of the enzyme. In agreement with these findings, EPZ015666 reduced trophozoite viability and encystment. Therefore, EiPRMT5 is a potential target for inhibiting the spread of amebiasis.
Collapse
Affiliation(s)
- Rigoberto Ortiz-Hernández
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico; (R.O.-H.); (J.B.); (S.M.-R.); (C.V.-C.)
| | - Elmer Joel Millán-Casarrubias
- Laboratorio de Sistemas de Diagnóstico y Tratamiento de Cáncer, Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas del Instituto Politécnico Nacional, Mexico City 07340, Mexico;
| | - Jeni Bolaños
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico; (R.O.-H.); (J.B.); (S.M.-R.); (C.V.-C.)
| | - Susana Munguía-Robledo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico; (R.O.-H.); (J.B.); (S.M.-R.); (C.V.-C.)
| | - Carlos Vázquez-Calzada
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico; (R.O.-H.); (J.B.); (S.M.-R.); (C.V.-C.)
| | - Elisa Azuara-Licéaga
- Programa de Posgraduados en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City 04510, Mexico;
| | - Jesús Valdés
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico;
| | - Mario Alberto Rodríguez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico; (R.O.-H.); (J.B.); (S.M.-R.); (C.V.-C.)
| |
Collapse
|
3
|
Joris T, Jouant T, Jacques JR, Gouverneur L, Saintmard X, Vilanova Mañá L, Jamakhani M, Reichert M, Willems L. Reduction of antisense transcription affects bovine leukemia virus replication and oncogenesis. PLoS Pathog 2024; 20:e1012659. [PMID: 39509441 PMCID: PMC11575825 DOI: 10.1371/journal.ppat.1012659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 11/19/2024] [Accepted: 10/12/2024] [Indexed: 11/15/2024] Open
Abstract
In sheep infected with bovine leukemia virus (BLV), transcription of structural, enzymatic, and accessory genes is silenced. However, the BLV provirus transcribes a series of non-coding RNAs that remain undetected by the host immune response. Specifically, three RNAs (AS1-L, AS1-S, and AS2) are consistently expressed from the antisense strand, originating from transcriptional initiation at the 3'-Long Terminal Repeat (LTR). To investigate the role of these non-coding RNAs in viral replication and pathogenesis, a reverse genetics approach was devised, capitalizing on a mechanistic disparity in transcription initiation between the 5' and 3' promoters. A two-nucleotide mutation (GG>TA) in the TFIIB-recognition element (BRE) impaired antisense transcription originating from the 3'-LTR. In the context of the provirus, this 2bp mutation significantly diminished the expression of antisense RNAs, while not notably affecting sense transcription. When inoculated to sheep, the mutated provirus was infectious but exhibited reduced replication levels, shedding light on the role of antisense transcription in vivo. In comparison to lymphoid organs in sheep infected with a wild-type (WT) provirus, the mutant demonstrated alterations in both the spatial distribution and rates of cell proliferation in the lymph nodes and the spleen. Analysis through RNA sequencing and RT-qPCR unveiled an upregulation of the Hmcn1/hemicentin-1 gene in B-lymphocytes from sheep infected with the mutated provirus. Further examination via confocal microscopy and immunohistochemistry revealed an increase in the amount of hemicentin-1 protein encoded by Hmcn1 in peripheral blood mononuclear cells (PBMCs) and lymphoid organs of sheep infected with the mutant. RNA interference targeting Hmcn1 expression impacted the migration of ovine kidney (OVK) cells in vitro. In contrast to the WT, the mutated provirus showed reduced oncogenicity when inoculated into sheep. Collectively, this study underscores the essential role of antisense transcription in BLV replication and pathogenicity. These findings may offer valuable insights into understanding the relevance of antisense transcription in the context of human T-cell leukemia virus (HTLV-1).
Collapse
Affiliation(s)
- Thomas Joris
- Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), Sart-Tilman, Liège, Belgium; Molecular Biology, Teaching and Research Centre (TERRA), Gembloux, Belgium
| | - Thomas Jouant
- Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), Sart-Tilman, Liège, Belgium; Molecular Biology, Teaching and Research Centre (TERRA), Gembloux, Belgium
| | - Jean-Rock Jacques
- Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), Sart-Tilman, Liège, Belgium; Molecular Biology, Teaching and Research Centre (TERRA), Gembloux, Belgium
| | - Lorian Gouverneur
- Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), Sart-Tilman, Liège, Belgium; Molecular Biology, Teaching and Research Centre (TERRA), Gembloux, Belgium
| | - Xavier Saintmard
- Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), Sart-Tilman, Liège, Belgium; Molecular Biology, Teaching and Research Centre (TERRA), Gembloux, Belgium
| | - Lea Vilanova Mañá
- Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), Sart-Tilman, Liège, Belgium; Molecular Biology, Teaching and Research Centre (TERRA), Gembloux, Belgium
| | - Majeed Jamakhani
- Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), Sart-Tilman, Liège, Belgium; Molecular Biology, Teaching and Research Centre (TERRA), Gembloux, Belgium
| | - Michal Reichert
- Department of Pathological Anatomy, National Veterinary Research Institute, Puławy, Poland
| | - Luc Willems
- Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), Sart-Tilman, Liège, Belgium; Molecular Biology, Teaching and Research Centre (TERRA), Gembloux, Belgium
| |
Collapse
|
4
|
Ichikawa T, Suekane A, Nakahata S, Iha H, Shimoda K, Murakami T, Morishita K. Inhibition of PRMT5/MEP50 Arginine Methyltransferase Activity Causes Cancer Vulnerability in NDRG2 low Adult T-Cell Leukemia/Lymphoma. Int J Mol Sci 2024; 25:2842. [PMID: 38474089 DOI: 10.3390/ijms25052842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
N-myc downstream-regulated gene 2 (NDRG2), which is a tumour suppressor, is frequently lost in many types of tumours, including adult T-cell leukaemia/lymphoma (ATL). The downregulation of NDRG2 expression is involved in tumour progression through the aberrant phosphorylation of several important signalling molecules. We observed that the downregulation of NDRG2 induced the translocation of protein arginine methyltransferase 5 (PRMT5) from the nucleus to the cytoplasm via the increased phosphorylation of PRMT5 at Serine 335. In NDRG2low ATL, cytoplasmic PRMT5 enhanced HSP90A chaperone activity via arginine methylation, leading to tumour progression and the maintenance of oncogenic client proteins. Therefore, we examined whether the inhibition of PRMT5 activity is a drug target in NDRG2low tumours. The knockdown of PRMT5 and binding partner methylsome protein 50 (MEP50) expression significantly demonstrated the suppression of cell proliferation via the degradation of AKT and NEMO in NDRG2low ATL cells, whereas NDRG2-expressing cells did not impair the stability of client proteins. We suggest that the relationship between PRMT5/MEP50 and the downregulation of NDRG2 may exhibit a novel vulnerability and a therapeutic target. Treatment with the PRMT5-specific inhibitors CMP5 and HLCL61 was more sensitive in NDRG2low cancer cells than in NDRG2-expressing cells via the inhibition of HSP90 arginine methylation, along with the degradation of client proteins. Thus, interference with PRMT5 activity has become a feasible and effective strategy for promoting cancer vulnerability in NDRG2low ATL.
Collapse
Affiliation(s)
- Tomonaga Ichikawa
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki, Miyazaki 889-1692, Japan
- Department of Microbiology, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama 350-0495, Japan
| | - Akira Suekane
- Trauma and Acute Critical Care Center, Tokyo Medical and Dental University Hospital, Tokyo 113-8510, Japan
| | - Shingo Nakahata
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki, Miyazaki 889-1692, Japan
- Division of HTLV-1/ATL Carcinogenesis and Therapeutics, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8544, Japan
| | - Hidekatsu Iha
- Division of Pathophysiology, The Research Center for GLOBAL and LOCAL Infectious Diseases (RCGLID), Oita University, Yufu 879-5503, Japan
| | - Kazuya Shimoda
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Takashi Murakami
- Department of Microbiology, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama 350-0495, Japan
| | - Kazuhiro Morishita
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki, Miyazaki 889-1692, Japan
- Project for Advanced Medical Research and Development, Project Research Division, Frontier Science Research Center, University of Miyazaki, Miyazaki 889-1692, Japan
| |
Collapse
|
5
|
Kumar D, Jain S, Coulter DW, Joshi SS, Chaturvedi NK. PRMT5 as a Potential Therapeutic Target in MYC-Amplified Medulloblastoma. Cancers (Basel) 2023; 15:5855. [PMID: 38136401 PMCID: PMC10741595 DOI: 10.3390/cancers15245855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
MYC amplification or overexpression is most common in Group 3 medulloblastomas and is positively associated with poor clinical outcomes. Recently, protein arginine methyltransferase 5 (PRMT5) overexpression has been shown to be associated with tumorigenic MYC functions in cancers, particularly in brain cancers such as glioblastoma and medulloblastoma. PRMT5 regulates oncogenes, including MYC, that are often deregulated in medulloblastomas. However, the role of PRMT5-mediated post-translational modification in the stabilization of these oncoproteins remains poorly understood. The potential impact of PRMT5 inhibition on MYC makes it an attractive target in various cancers. PRMT5 inhibitors are a promising class of anti-cancer drugs demonstrating preclinical and preliminary clinical efficacies. Here, we review the publicly available preclinical and clinical studies on PRMT5 targeting using small molecule inhibitors and discuss the prospects of using them in medulloblastoma therapy.
Collapse
Affiliation(s)
- Devendra Kumar
- Department of Pediatrics, Division of Hematology and Oncology, University of Nebraska Medical Center, Omaha, NE 69198, USA; (D.K.); (S.J.); (D.W.C.)
| | - Stuti Jain
- Department of Pediatrics, Division of Hematology and Oncology, University of Nebraska Medical Center, Omaha, NE 69198, USA; (D.K.); (S.J.); (D.W.C.)
| | - Don W. Coulter
- Department of Pediatrics, Division of Hematology and Oncology, University of Nebraska Medical Center, Omaha, NE 69198, USA; (D.K.); (S.J.); (D.W.C.)
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 69198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 69198, USA
| | - Shantaram S. Joshi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 69198, USA;
| | - Nagendra K. Chaturvedi
- Department of Pediatrics, Division of Hematology and Oncology, University of Nebraska Medical Center, Omaha, NE 69198, USA; (D.K.); (S.J.); (D.W.C.)
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 69198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 69198, USA
| |
Collapse
|
6
|
Zheng K, Chen S, Ren Z, Wang Y. Protein arginine methylation in viral infection and antiviral immunity. Int J Biol Sci 2023; 19:5292-5318. [PMID: 37928266 PMCID: PMC10620831 DOI: 10.7150/ijbs.89498] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Abstract
Protein arginine methyltransferase (PRMT)-mediated arginine methylation is an important post-transcriptional modification that regulates various cellular processes including epigenetic gene regulation, genome stability maintenance, RNA metabolism, and stress-responsive signal transduction. The varying substrates and biological functions of arginine methylation in cancer and neurological diseases have been extensively discussed, providing a rationale for targeting PRMTs in clinical applications. An increasing number of studies have demonstrated an interplay between arginine methylation and viral infections. PRMTs have been found to methylate and regulate several host cell proteins and different functional types of viral proteins, such as viral capsids, mRNA exporters, transcription factors, and latency regulators. This modulation affects their activity, subcellular localization, protein-nucleic acid and protein-protein interactions, ultimately impacting their roles in various virus-associated processes. In this review, we discuss the classification, structure, and regulation of PRMTs and their pleiotropic biological functions through the methylation of histones and non-histones. Additionally, we summarize the broad spectrum of PRMT substrates and explore their intricate effects on various viral infection processes and antiviral innate immunity. Thus, comprehending the regulation of arginine methylation provides a critical foundation for understanding the pathogenesis of viral diseases and uncovering opportunities for antiviral therapy.
Collapse
Affiliation(s)
- Kai Zheng
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Siyu Chen
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Zhe Ren
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632, China
| | - Yifei Wang
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
7
|
Nakajima S, Okuma K. Mouse Models for HTLV-1 Infection and Adult T Cell Leukemia. Int J Mol Sci 2023; 24:11737. [PMID: 37511495 PMCID: PMC10380921 DOI: 10.3390/ijms241411737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Adult T cell leukemia (ATL) is an aggressive hematologic disease caused by human T cell leukemia virus type 1 (HTLV-1) infection. Various animal models of HTLV-1 infection/ATL have been established to elucidate the pathogenesis of ATL and develop appropriate treatments. For analyses employing murine models, transgenic and immunodeficient mice are used because of the low infectivity of HTLV-1 in mice. Each mouse model has different characteristics that must be considered before use for different HTLV-1 research purposes. HTLV-1 Tax and HBZ transgenic mice spontaneously develop tumors, and the roles of both Tax and HBZ in cell transformation and tumor growth have been established. Severely immunodeficient mice were able to be engrafted with ATL cell lines and have been used in preclinical studies of candidate molecules for the treatment of ATL. HTLV-1-infected humanized mice with an established human immune system are a suitable model to characterize cells in the early stages of HTLV-1 infection. This review outlines the characteristics of mouse models of HTLV-1 infection/ATL and describes progress made in elucidating the pathogenesis of ATL and developing related therapies using these mice.
Collapse
Affiliation(s)
- Shinsuke Nakajima
- Department of Microbiology, Faculty of Medicine, Kansai Medical University, Hirakata 573-1010, Osaka, Japan
| | - Kazu Okuma
- Department of Microbiology, Faculty of Medicine, Kansai Medical University, Hirakata 573-1010, Osaka, Japan
| |
Collapse
|