1
|
Liu H, Sun R, Wu Y, Feng J, Fan G, Chen S, Li L. Molecular detection and identification of goose astrovirus in GuangDong Province, China. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 130:105745. [PMID: 40147547 DOI: 10.1016/j.meegid.2025.105745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
In recent years, Goose Astrovirus (GAstV) has become a major pathogen in China, afflicting geese with significant clinical manifestations like gout and urate deposits in organs. Notably, similar symptoms have emerged in ducks. From 2023 to 2024, 126 liver samples were collected from ducks in Guangdong Province, where farms reported emaciation, paralysis, and deaths. Metagenomic analysis pinpointed GAstV as the primary pathogen, with a 43.65 % confirmed positive rate via qPCR. A new strain, GD2406, was identified, showing 97.5 %-98.8 % similarity to 30 GAstV-2 strains in GenBank. GD2406 displayed 98.3 % and 97.7 % identity with the duck strains HNNY0620 and SDTA, and 98.3 % and 98.4 % identity with highly virulent GAstV strains HNKF-1 and HNSQ-6. Phylogenetic analysis indicated a genetic closeness between GD2406 and the goose strain HB01. There were 13 amino acid mutations, mainly within ORF2, and a single mutation differing from HNKF-1 and HNSQ-6, hinting at significant pathogenic potential for both ducks and geese. This study is the first to report GAstV causing severe symptoms and mortality in Muscovy ducks in Guangdong Province, suggesting ducks could be key hosts and underscoring the risk of cross-species transmission.
Collapse
Affiliation(s)
- Hao Liu
- School of Animal Science and Technology, Foshan University, Foshan, Guangdong 528225, China
| | - Ruyu Sun
- School of Animal Science and Technology, Foshan University, Foshan, Guangdong 528225, China
| | - Yaning Wu
- School of Animal Science and Technology, Foshan University, Foshan, Guangdong 528225, China
| | - Jiayao Feng
- School of Animal Science and Technology, Foshan University, Foshan, Guangdong 528225, China
| | - Guiying Fan
- School of Animal Science and Technology, Foshan University, Foshan, Guangdong 528225, China
| | - Shuting Chen
- School of Animal Science and Technology, Foshan University, Foshan, Guangdong 528225, China
| | - Lixia Li
- School of Animal Science and Technology, Foshan University, Foshan, Guangdong 528225, China.
| |
Collapse
|
3
|
Yin C, Shi Y, Li H, Lu Z, Gao X, Hu G, Guo X. Effects and potential pathways of goose astrovirus infection on gosling hepatic lipid metabolism. Front Microbiol 2025; 16:1531373. [PMID: 40071213 PMCID: PMC11893818 DOI: 10.3389/fmicb.2025.1531373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/16/2025] [Indexed: 03/14/2025] Open
Abstract
Introduction The adverse effects of goose astrovirus (GoAstV) on avian growth and health have been widely reported previously, while the stress reactions and corresponding mechanism of gosling liver responding to GoAstV infection remain not entirely clear. Methods One-day-old goslings inoculated subcutaneously with 2 × 10-6 TCID50 of GoAstV were employed as an experimental model, and the potential effects and pathways of GoAstV infection on gosling liver functions were investigated by combining the morphological, biochemical and RNA sequencing (RNA-seq) techniques. Results Structural and functional impairments were found in gosling livers post the virus infection, as characterized by the histological alterations in liver index and morphology of hepatic cord and sinuses, as well as the abnormal expression patterns of the cellular antioxidant, inflammation and apoptosis-related genes. RNA sequencing analysis were performed to investigate the underlying mechanism. Results showed that the analysis of screened 1949 differentially expressed genes (DEGs) were mainly enriched in GO terms related to organic immune defense and substance metabolism, and their corresponding KEGG pathways represented by PPAR signaling pathway, intestinal immune network for IgA production, and fatty acid metabolism and degradation, suggesting that the functions of avian immunity and lipid metabolism were greatly changed after the GoAstV infection. Finally, the lipid deposition in gosling hepatocytes were further demonstrated by the subsequent Oil red O staining, biochemical detection of serum TG and HDL-C, and the gene expression analysis including PPARα, PPARγ, ACSBG2, ACSL5, CPT1A and PCK1. Discussion Though limitations exist, the findings of this study are helpful to expand our understanding about the negative effects of GoAstV on goslings, and provide us with new clues for the salvaging of GoAstV-induced liver dysfunctions in poultry industry.
Collapse
Affiliation(s)
- Chao Yin
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yun Shi
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Haiqin Li
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, China
| | - Zhihua Lu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xiaona Gao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
4
|
Jiang P, Li A, Ma H, Lan Y, Wang J, Wang X, Zhao L, Wu Q, Wang Y, Guo X. Genetic and structural factors contributing to the dominance and persistence of goose astrovirus type 2. Avian Pathol 2025:1-9. [PMID: 39817320 DOI: 10.1080/03079457.2025.2454416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
RESEARCH HIGHLIGHTS Goose astrovirus type 2 (GoAstV-2) became the dominant strain in China post-2017.GoAstV-2 exhibits weaker codon usage bias, enhancing adaptability across hosts.The stability of GoAstV-2 spike protein reduces mutation needs and selective pressure.GoAstV-2 low spike protein variability supports long-term persistence in host populations.
Collapse
Affiliation(s)
- Peng Jiang
- College of Animal Science and Technology/Veterinary Medicine, Anhui Agricultural University, Hefei, People's Republic of China
| | - Aolin Li
- College of Animal Science and Technology/Veterinary Medicine, Anhui Agricultural University, Hefei, People's Republic of China
| | - Hongfu Ma
- College of Animal Science and Technology/Veterinary Medicine, Anhui Agricultural University, Hefei, People's Republic of China
| | - Yankun Lan
- Jinzhai Modern Agricultural Cooperation Centre, Dabie Mountain Comprehensive Experiment Station, Anhui Agricultural University, Lu'an, People's Republic of China
| | - Jiaguo Wang
- Jinzhai Modern Agricultural Cooperation Centre, Dabie Mountain Comprehensive Experiment Station, Anhui Agricultural University, Lu'an, People's Republic of China
| | - Xin Wang
- Jinzhai Modern Agricultural Cooperation Centre, Dabie Mountain Comprehensive Experiment Station, Anhui Agricultural University, Lu'an, People's Republic of China
| | - Liang Zhao
- Animal Husbandry Development Center of Lu'an, Lu'an, People's Republic of China
| | - Qifei Wu
- FeiChi Poultry Ecological Breeding Co., Hefei, People's Republic of China
| | - Yong Wang
- College of Animal Science and Technology/Veterinary Medicine, Anhui Agricultural University, Hefei, People's Republic of China
- Jinzhai Modern Agricultural Cooperation Centre, Dabie Mountain Comprehensive Experiment Station, Anhui Agricultural University, Lu'an, People's Republic of China
| | - Xu Guo
- College of Animal Science and Technology/Veterinary Medicine, Anhui Agricultural University, Hefei, People's Republic of China
| |
Collapse
|
5
|
Ren D, Zhang H, Ye X, Jia X, Chen R, Tang T, Ye J, Wu S. Current Situation of Goose Astrovirus in China: A Review. Viruses 2025; 17:84. [PMID: 39861873 PMCID: PMC11768540 DOI: 10.3390/v17010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Gosling gout disease is an infectious disease caused by goose astrovirus (GAstV), which can result in urate deposition in the internal organs and joints of goslings. Since 2015, outbreaks of gosling gout disease have occurred in several goose-producing areas in China. Subsequently, the disease spread to the vast majority of eastern China, becoming a major threat to goose farms and causing huge economic losses to the goose industry. Meanwhile, GAstV can infect species of birds other than geese. It is worth noting that, as an emerging virus, the research on GAstV is still in the early stages. Therefore, the investigation of GAstV has become an urgent issue, which can improve understanding of GAstV and develop effective measures to control its threat to poultry. The purpose of this review is to summarize the latest research progress on GAstV in recent years, mainly focusing on the genetic evolution, pathogenesis, diagnostic detection, and control strategies of GAstV, aiming to provide a reference for scientific prevention and control of GAstV infection.
Collapse
Affiliation(s)
- Dan Ren
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui 323000, China; (D.R.); (H.Z.)
| | - Hongliang Zhang
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui 323000, China; (D.R.); (H.Z.)
| | - Xiaoou Ye
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui 323000, China; (D.R.); (H.Z.)
| | - Xiuzhi Jia
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui 323000, China; (D.R.); (H.Z.)
| | - Ruiming Chen
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui 323000, China; (D.R.); (H.Z.)
| | - Tingbing Tang
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui 323000, China; (D.R.); (H.Z.)
| | - Jianqiang Ye
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Songquan Wu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui 323000, China; (D.R.); (H.Z.)
| |
Collapse
|
6
|
Xu L, Jiang B, Cheng Y, Gao Z, He Y, Wu Z, Wang M, Jia R, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Ou X, Gao Q, Sun D, Cheng A, Chen S. Molecular epidemiology and virulence of goose astroviruses genotype-2 with different internal gene sequences. Front Microbiol 2023; 14:1301861. [PMID: 38143855 PMCID: PMC10740193 DOI: 10.3389/fmicb.2023.1301861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/10/2023] [Indexed: 12/26/2023] Open
Abstract
Goose astrovirus (GAstV) is a small, non-enveloped, single-stranded, positive-sense RNA virus. GAstV has rapidly spread across various regions in China since 2016. In Sichuan, out of 113 samples were collected from goose diseases between 2019 and 2022, 97 were positive for GAstV through PCR testing. Remarkably, over the past three years, GAstV outbreak in Sichuan has accounted for an astonishing 85.8% of all goose-origin viruses. Among these cases, 63.9% had single GAstV infections, 29.9% had dual infections, and 6.2% had quadruple infections. To comprehend the variations in virulence among distinct strains of GAstV. 12 representative strains of single GAstV infections were isolated. These strains exhibited distinct characteristics, such as prominent white urate depositions in organs and joints, as well as extensive tissues phagocytosis in major target organs' tissues. The conserved ORF1b genes and the variable ORF2 genes of these representative GAstV strains were sequenced, enabling the establishment of phylogenetic trees for GAstV. All GAstV strains were identified as belonging to genotype-2 with varying internal gene sequences. Experiments were conducted on GAstV genotype-2, both in vivo and in vitro, revealed significant variations in pathogenicity and virulence across susceptible cells, embryos, and goslings. This comprehensive study enhances researchers' understanding of the transmission characteristics and virulence of GAstV genotype-2, aiding in a better comprehension of their molecular epidemiology and pathogenic mechanism.
Collapse
Affiliation(s)
- Linhua Xu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Bowen Jiang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Yao Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Zhenjie Gao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Yu He
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Zhen Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Xumin Ou
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Qun Gao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Di Sun
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| |
Collapse
|