1
|
Zhang L, Li H, Wei X, Li Y, Liu Z, Liu M, Huang W, Wang H, Zhao J. The ZjMYB44-ZjPOD51 module enhances jujube defense response against phytoplasma by upregulating lignin biosynthesis. HORTICULTURE RESEARCH 2025; 12:uhaf083. [PMID: 40343351 PMCID: PMC12058307 DOI: 10.1093/hr/uhaf083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 03/03/2025] [Indexed: 05/11/2025]
Abstract
Lignin is a major component of the plant cell wall and has a conserved basic defense function in higher plants, helping the plants cope with pathogen infection. However, the regulatory mechanism of lignin biosynthesis in plants under phytoplasma stress remains unclear. In this study, we reported that peroxidase 51 (ZjPOD51), which is involved in lignin monomer polymerization, was induced by phytoplasma infection and that overexpression of ZjPOD51 in phytoplasma-infected jujube seedlings and Arabidopsis plants significantly increased their defense response against phytoplasma. Yeast one-hybrid (Y1H) and luciferase (LUC) assays showed that ZjPOD51 transcription was directly upregulated by ZjMYB44. Genetic validation demonstrated that ZjMYB44 expression was also induced by phytoplasma infection and contributed to lignin accumulation, which consequently enhanced phytoplasma defense in a ZjPOD51-dependent manner. These results demonstrated that the ZjMYB44-ZjPOD51 module enhanced the jujube defense response against phytoplasma by upregulating lignin biosynthesis. Overall, our study first elucidates how plants regulate lignin to enhance their defense response against phytoplasma and provides clues for jujube resistance breeding.
Collapse
Affiliation(s)
- Liman Zhang
- College of Life Science, Hebei Agricultural University, Baoding 071000, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding 071000, China
| | - Hongtai Li
- College of Life Science, Hebei Agricultural University, Baoding 071000, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding 071000, China
| | - Ximeng Wei
- College of Life Science, Hebei Agricultural University, Baoding 071000, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding 071000, China
| | - Yuanyuan Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhiguo Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding 071000, China
| | - Mengjun Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding 071000, China
| | - Weijie Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Huibin Wang
- College of Life Science, Hebei Agricultural University, Baoding 071000, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding 071000, China
| | - Jin Zhao
- College of Life Science, Hebei Agricultural University, Baoding 071000, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
2
|
Yadav SK, Singh D, Prasad L, Jat B, Rao GP, Saharan MS, Kaur V. Utilization of 16Sr RNA and secA genes for molecular discernment of ' Candidatus Phytoplasma australasiaticum' strain associated with linseed germplasm in India. 3 Biotech 2024; 14:201. [PMID: 39149558 PMCID: PMC11322467 DOI: 10.1007/s13205-024-04046-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/04/2024] [Indexed: 08/17/2024] Open
Abstract
The growing prevalence of phytoplasma associated symptoms on linseed or flax (Linum usitatissimum L.) germplasm at Indian Council of Agricultural Research- National Bureau of Plant Genetic Resources (ICAR-NBPGR) fields was noticed during the 2019-22 growing seasons. The characteristic phytoplasma symptoms of phyllody, stem fasciation, stunting, along with floral and capsule malformations were observed in 41 linseed accessions grown at experimental fields of ICAR-NBPGR, Delhi. During 3 years, the presence of phytoplasma in symptomatic linseed accessions was confirmed by nested-PCR assays utilizing 16S rRNA and secA gene-specific primers. The 16S rRNA and secA gene sequences of linseed phytoplasma strains from the representative symptomatic 41 linseed accessions exhibited 100% sequence identity among themselves and 99.93% and 99.82% sequence homology with reference strain, 'Candidatus Phytoplasma australasiaticum' (GenBank Accession: Y10097). Phylogenetic analysis of 16S rRNA and secA gene sequences clustered the linseed isolates with the peanut witches' broom group belonging to 'Ca. P. australasiaticum' strains. The virtual RFLP analysis of 16S rRNA F2nR2 fragment (~1.2 kb) of linseed phytoplasma strains further classified it into 16Sr group II, subgroup D. Our results suggested confirmation of the association of 'Ca. P. australasiaticum' strain (16SrII-D) in the linseed germplasm accessions from North India, which is the first report from India. The phytoplasma infection also reduced the growth and yield parameters of two linseed accessions (IC0498748 and EC0718851).
Collapse
Affiliation(s)
- Shashank Kumar Yadav
- Division of Germplasm Evaluation, Indian Council of Agricultural Research- National Bureau of Plant Genetic Resources (ICAR-NBPGR), Pusa Campus, New Delhi, 110012 India
| | - Devender Singh
- Division of Germplasm Evaluation, Indian Council of Agricultural Research- National Bureau of Plant Genetic Resources (ICAR-NBPGR), Pusa Campus, New Delhi, 110012 India
| | - Lakshman Prasad
- Division of Plant Pathology, Indian Council of Agricultural Research- Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110 012 India
| | - Balram Jat
- Division of Germplasm Evaluation, Indian Council of Agricultural Research- National Bureau of Plant Genetic Resources (ICAR-NBPGR), Pusa Campus, New Delhi, 110012 India
| | - Govind Pratap Rao
- Division of Plant Pathology, Indian Council of Agricultural Research- Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110 012 India
| | - Mahender Singh Saharan
- Division of Plant Pathology, Indian Council of Agricultural Research- Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110 012 India
| | - Vikender Kaur
- Division of Germplasm Evaluation, Indian Council of Agricultural Research- National Bureau of Plant Genetic Resources (ICAR-NBPGR), Pusa Campus, New Delhi, 110012 India
| |
Collapse
|
3
|
Acuña-Amador L, Barloy-Hubler F. In silico analysis of Ffp1, an ancestral Porphyromonas spp. fimbrillin, shows differences with Fim and Mfa. Access Microbiol 2024; 6:000771.v3. [PMID: 39130734 PMCID: PMC11316588 DOI: 10.1099/acmi.0.000771.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/08/2024] [Indexed: 08/13/2024] Open
Abstract
Background. Scant information is available regarding fimbrillins within the genus Porphyromonas, with the notable exception of those belonging to Porphyromonas gingivalis, which have been extensively researched for several years. Besides fim and mfa, a third P. gingivalis adhesin called filament-forming protein 1 (Ffp1) has recently been described and seems to be pivotal for outer membrane vesicle (OMV) production. Objective. We aimed to investigate the distribution and diversity of type V fimbrillin, particularly Ffp1, in the genus Porphyromonas. Methods. A bioinformatics phylogenomic analysis was conducted using all accessible Porphyromonas genomes to generate a domain search for fimbriae, using hidden Markov model profiles. Results. Ffp1 was identified as the sole fimbrillin present in all analysed genomes. After manual verification (i.e. biocuration) of both structural and functional annotations and 3D modelling, this protein was determined to be a type V fimbrillin, with a closer structural resemblance to a Bacteroides ovatus fimbrillin than to FimA or Mfa1 from P. gingivalis. Conclusion. It appears that Ffp1 is an ancestral fimbria, transmitted through vertical inheritance and present across all Porphyromonas species. Additional investigations are necessary to elucidate the biogenesis of Ffp1 fimbriae and their potential role in OMV production and niche adaptation.
Collapse
Affiliation(s)
- Luis Acuña-Amador
- Laboratorio de Investigación en Bacteriología Anaerobia, Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Frederique Barloy-Hubler
- Université de Rennes 1, CNRS, UMR 6553 ECOBIO (Écosystèmes, Biodiversité, Évolution), 35042 Rennes, France
| |
Collapse
|
4
|
Kirdat K, Tiwarekar B, Manjula KN, Padma S, Sathe S, Sundararaj R, Yadav A. Draft genome sequence of ' Candidatus Phytoplasma asteris,' strain SW86 associated with sandal spike disease (SSD). 3 Biotech 2024; 14:109. [PMID: 38481824 PMCID: PMC10928027 DOI: 10.1007/s13205-024-03952-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/02/2024] [Indexed: 04/11/2024] Open
Abstract
The sandal spike disease (SSD), related to 'Ca. Phytoplasma asteris' (Aster Yellows group), poses a significant threat to Indian sandalwood (Santalum album L.), making it the second most expensive wood globally due to declining population density. The epidemiology of SSD and the nature of the pathogen remain poorly understood. The SW86 isolate, collected from the Marayoor Sandalwood Reserve, was chosen for genome sequencing subsequent to confirming its titer and enriching phytoplasma DNA. Genome sequencing, utilizing Illumina and Oxford Nanopore Technology platforms, enabled a targeted hybrid metagenomic assembly resulting in 20 scaffolds totaling 554,025 bp, housing 436 protein-coding genes, 27 tRNA, and 1 rRNA operon. The genome analysis highlighted specific gene distributions, emphasizing translation, ribosomal structure, and biogenesis, with 352 genes assigned to 18 functional categories. Additionally, 322 proteins received functional assignments in the KEGG database, emphasizing 'Genetic Information Processing' and 'Environmental Information Processing'. Key potential pathogenicity factors, including signal peptide proteins and virulence proteins, were identified. Noteworthy findings include homologs of effectors genes like SAP11 and SAP05 and pathogenesis-related proteins, such as hemolysin III and SodA genes, in the SW86 genome. The duplicated cation-transporting P-type ATPase in the SW86 genome suggests a role in enhancing adaptability and contributing to the severity of SSD symptoms. This genome analysis provides crucial insights into the genomic features and potential virulence factors of 'Ca. Phytoplasma asteris' strain SW86, advancing our understanding of pathogenicity mechanisms and offering avenues for future disease management strategies in Indian sandalwood. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03952-5.
Collapse
Affiliation(s)
- Kiran Kirdat
- National Centre for Microbial Resource, National Centre for Cell Science, NCCS Complex, Ganeshkhind, Pune, Maharashtra 411007 India
- Department of Microbiology, Tuljaram Chaturchand College, Baramati, Maharashtra 413102 India
| | - Bhavesh Tiwarekar
- National Centre for Microbial Resource, National Centre for Cell Science, NCCS Complex, Ganeshkhind, Pune, Maharashtra 411007 India
| | - K. N. Manjula
- Forest Protection Division, Institute of Wood Science and Technology, 18th Cross, Malleswaram, Bangalore, 560003 India
| | - S. Padma
- Forest Protection Division, Institute of Wood Science and Technology, 18th Cross, Malleswaram, Bangalore, 560003 India
| | - Shivaji Sathe
- Department of Microbiology, Tuljaram Chaturchand College, Baramati, Maharashtra 413102 India
| | - R. Sundararaj
- Forest Protection Division, Institute of Wood Science and Technology, 18th Cross, Malleswaram, Bangalore, 560003 India
| | - Amit Yadav
- National Centre for Microbial Resource, National Centre for Cell Science, NCCS Complex, Ganeshkhind, Pune, Maharashtra 411007 India
| |
Collapse
|
5
|
Wang R, Bai B, Li D, Wang J, Huang W, Wu Y, Zhao L. Phytoplasma: A plant pathogen that cannot be ignored in agricultural production-Research progress and outlook. MOLECULAR PLANT PATHOLOGY 2024; 25:e13437. [PMID: 38393681 PMCID: PMC10887288 DOI: 10.1111/mpp.13437] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024]
Abstract
Phytoplasmas are phloem-restricted plant-pathogenic bacteria transmitted by insects. They cause diseases in a wide range of host plants, resulting in significant economic and ecological losses worldwide. Research on phytoplasmas has a long history, with significant progress being made in the past 30 years. Notably, with the rapid development of phytoplasma research, scientists have identified the primary agents involved in phytoplasma transmission, established classification and detection systems for phytoplasmas, and 243 genomes have been sequenced and assembled completely or to draft quality. Multiple possible phytoplasma effectors have been investigated, elucidating the molecular mechanisms by which phytoplasmas manipulate their hosts. This review summarizes recent advances in phytoplasma research, including identification techniques, host range studies, whole- or draft-genome sequencing, effector pathogenesis and disease control methods. Additionally, future research directions in the field of phytoplasma research are discussed.
Collapse
Affiliation(s)
- Ruotong Wang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency ProductionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Bixin Bai
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency ProductionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Danyang Li
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency ProductionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Jingke Wang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency ProductionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Weijie Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Yunfeng Wu
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency ProductionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Lei Zhao
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency ProductionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
6
|
Carreón-Anguiano KG, Vila-Luna SE, Sáenz-Carbonell L, Canto-Canche B. PhyEffector, the First Algorithm That Identifies Classical and Non-Classical Effectors in Phytoplasmas. Biomimetics (Basel) 2023; 8:550. [PMID: 37999191 PMCID: PMC10669590 DOI: 10.3390/biomimetics8070550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023] Open
Abstract
Phytoplasmas are the causal agents of more than 100 plant diseases in economically important crops. Eleven genomes have been fully sequenced and have allowed us to gain a better understanding of the biology and evolution of phytoplasmas. Effectors are key players in pathogenicity and virulence, and their identification and description are becoming an essential practice in the description of phytoplasma genomes. This is of particular importance because effectors are possible candidates for the development of new strategies for the control of plant diseases. To date, the prediction of effectors in phytoplasmas has been a great challenge; the reliable comparison of effectoromes has been hindered because research teams have used the combination of different programs in their predictions. This is not trivial since significant differences in the results can arise, depending on the predictive pipeline used. Here, we tested different predictive pipelines to create the PhyEffector algorithm; the average value of the F1 score for PhyEffector was 0.9761 when applied to different databases or genomes, demonstrating its robustness as a predictive tool. PhyEffector can recover both classical and non-classical phytoplasma effectors, making it an invaluable tool to accelerate effectoromics in phytoplasmas.
Collapse
Affiliation(s)
| | | | | | - Blondy Canto-Canche
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico (S.E.V.-L.); (L.S.-C.)
| |
Collapse
|
7
|
Zhang RY, Wang XY, Li J, Shan HL, Li YH, Huang YK, He XH. Complete genome sequence of " Candidatus Phytoplasma sacchari" obtained using a filter-based DNA enrichment method and Nanopore sequencing. Front Microbiol 2023; 14:1252709. [PMID: 37849920 PMCID: PMC10577292 DOI: 10.3389/fmicb.2023.1252709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/12/2023] [Indexed: 10/19/2023] Open
Abstract
Phytoplasmas are phloem-limited plant pathogens, such as sugarcane white leaf (SCWL) phytoplasma, which are responsible for heavy economic losses to the sugarcane industry. Characterization of phytoplasmas has been limited because they cannot be cultured in vitro. However, with the advent of genome sequencing, different aspects of phytoplasmas are being investigated. In this study, we developed a DNA enrichment method for sugarcane white leaf (SCWL) phytoplasma, evaluated the effect of DNA enrichment via Illumina sequencing technologies, and utilized Illumina and Nanopore sequencing technologies to obtain the complete genome sequence of the "Candidatus Phytoplasma sacchari" isolate SCWL1 that is associated with sugarcane white leaf in China. Illumina sequencing analysis elucidated that only 1.21% of the sequencing reads from total leaf DNA were mapped to the SCWL1 genome, whereas 40.97% of the sequencing reads from the enriched DNA were mapped to the SCWL1 genome. The genome of isolate SCWL1 consists of a 538,951 bp and 2976 bp long circular chromosome and plasmid, respectively. We identified 459 protein-encoding genes, 2 complete 5S-23S-16S rRNA gene operons, 27 tRNA genes, and an incomplete potential mobile unit (PMU) in the circular chromosome. Phylogenetic analyses and average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values based on the sequenced genome revealed that SCWL phytoplasma and sugarcane grassy shoot (SCGS) phytoplasma belonged to the same phytoplasma species. This study provides a genomic DNA enrichment method for phytoplasma sequencing. Moreover, we report the first complete genome of a "Ca. Phytoplasma sacchari" isolate, thus contributing to future studies on the evolutionary relationships and pathogenic mechanisms of "Ca. Phytoplasma sacchari" isolates.
Collapse
Affiliation(s)
- Rong-Yue Zhang
- Yunnan Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Xiao-Yan Wang
- Yunnan Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan, China
| | - Jie Li
- Yunnan Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan, China
| | - Hong-Li Shan
- Yunnan Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan, China
| | - Yin-Hu Li
- Yunnan Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan, China
| | - Ying-Kun Huang
- Yunnan Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan, China
| | - Xia-Hong He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- School of Landscape and Horticulture, Southwest Forestry University, Kunming, China
| |
Collapse
|
8
|
Wang D, Sarsaiya S, Qian X, Jin L, Shu F, Zhang C, Chen J. Analysis of the response mechanisms of Pinellia ternata to terahertz wave stresses using transcriptome and metabolic data. FRONTIERS IN PLANT SCIENCE 2023; 14:1227507. [PMID: 37771489 PMCID: PMC10522861 DOI: 10.3389/fpls.2023.1227507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/01/2023] [Indexed: 09/30/2023]
Abstract
Pinellia ternata (Thunb.) Breit. (Araceae), a significant medicinal plant, has been used to treat various diseases for centuries. Terahertz radiation (THZ) is located between microwaves and infrared rays on the electromagnetic spectrum. THZ possesses low single-photon energy and a spectral fingerprint, but its effects on plant growth have not yet been investigated. The study's primary objective was to examine the transcriptome and metabolome databases of the SY line to provide a new perspective for identifying genes associated with resistance and growth promotion and comprehending the underlying molecular mechanism. Variations in the biological characteristics of P. ternata grown under control and experimental conditions were analyzed to determine the effect of THZ. Compared with the control group, phenotypic variables such as leaf length, petiole length, number of leaves, leaf petiole diameter, and proliferation coefficient exhibited significant differences. P. ternata response to THZ was analyzed regarding the effects of various coercions on root exudation. The experimental group contained considerably more sugar alcohol than the control group. The transcriptome analysis revealed 1,695 differentially expressed genes (DEGs), including 509 upregulated and 1,186 downregulated genes. In the KEGG-enriched plant hormone signaling pathway, there were 19 differentially expressed genes, 13 of which were downregulated and six of which were upregulated. In the metabolomic analysis, approximately 416 metabolites were uncovered. There were 112 DEMs that were downregulated, whereas 148 were upregulated. The P. ternata leaves displayed significant differences in phytohormone metabolites, specifically in brassinolide (BR) and abscisic acid (ABA). The rise in BR triggers alterations in internal plant hormones, resulting in faster growth and development of P. ternata. Our findings demonstrated a link between THZ and several metabolic pathway processes, which will enhance our understanding of P. ternata mechanisms.
Collapse
Affiliation(s)
- Dongdong Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Surendra Sarsaiya
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xu Qian
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Leilei Jin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Fuxing Shu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, China
| | | | - Jishuang Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, China
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|