1
|
Mahmood M, Kato N, Nakai S, Gotoh T, Nishijima W, Umehara A. Controlling organic carbon increase in oxygenated marine sediment by using decarburization slag. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120820. [PMID: 38603849 DOI: 10.1016/j.jenvman.2024.120820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/08/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024]
Abstract
The chemical oxygen demand (COD) in the Seto Inland Sea, Japan has increased in the recent decades due to the increase of bottom dissolved oxygen (DO) concentration which stimulated several autotrophic microorganisms, specially sulfur oxidizing bacteria (SOB). This increased SOB activity due to the oxygenation of the bottom sediment synthesized new organic matter (OM) which contributed dissolved organic carbon to the overlying seawater. This phenomenon further led to hypoxia in some subareas in the Seto Inland Sea. Higher pH or alkaline environment has been found to be an unfavorable condition for SOB. In this research, we used decarburization slag to elevate the pH of sediment to control the SOB activity and consequently reduce OM production in the sediment. Ignition loss of the surface sediment increased from 5.14% 6.38% after 21 days of incubation with aeration; whereas the sediment showed the less ignition loss of 5.71% after 21 days when the slag was incubated in the same experimental setup. Microbial community analysis showed less SOB activity in the slag added aerated sediment which accounts for the controlled increase of OM in the sediment. An additional experiment was conducted with magnesium oxide to confirm whether elevated pH can control the OM increase in sediment due to rising DO. All these results showed that decarburization slag can elevate the pH of the sediment to a certain level which can control the SOB activity followed by controlled increase of OM in the sediment. The findings may be beneficial to control accumulation of sedimentary OM which can act as a source of organic carbon in the overlying seawater.
Collapse
Affiliation(s)
- Mukseet Mahmood
- Department of Oceanography and Coastal Sciences, Louisiana State University, Louisiana, USA
| | - Natsuki Kato
- Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima, Japan
| | - Satoshi Nakai
- Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima, Japan.
| | - Takehiko Gotoh
- Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima, Japan
| | - Wataru Nishijima
- Environmental Research and Management Center, Hiroshima University, Hiroshima, Japan
| | - Akira Umehara
- Environmental Research and Management Center, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
2
|
Lin S, Guo Y, Huang Z, Tang K, Wang X. Comparative Genomic Analysis of Cold-Water Coral-Derived Sulfitobacter faviae: Insights into Their Habitat Adaptation and Metabolism. Mar Drugs 2023; 21:md21050309. [PMID: 37233503 DOI: 10.3390/md21050309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
Sulfitobacter is one of the major sulfite-oxidizing alphaproteobacterial groups and is often associated with marine algae and corals. Their association with the eukaryotic host cell may have important ecological contexts due to their complex lifestyle and metabolism. However, the role of Sulfitobacter in cold-water corals remains largely unexplored. In this study, we explored the metabolism and mobile genetic elements (MGEs) in two closely related Sulfitobacter faviae strains isolated from cold-water black corals at a depth of ~1000 m by comparative genomic analysis. The two strains shared high sequence similarity in chromosomes, including two megaplasmids and two prophages, while both contained several distinct MGEs, including prophages and megaplasmids. Additionally, several toxin-antitoxin systems and other types of antiphage elements were also identified in both strains, potentially helping Sulfitobacter faviae overcome the threat of diverse lytic phages. Furthermore, the two strains shared similar secondary metabolite biosynthetic gene clusters and genes involved in dimethylsulfoniopropionate (DMSP) degradation pathways. Our results provide insight into the adaptive strategy of Sulfitobacter strains to thrive in ecological niches such as cold-water corals at the genomic level.
Collapse
Affiliation(s)
- Shituan Lin
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Zixian Huang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|