1
|
Zubrova A, Tadrosova M, Semerad J, Cajthaml T, Pajer P, Strejcek M, Suman J, Uhlik O. Differential effect of monoterpenes and flavonoids on the transcription of aromatic ring-hydroxylating dioxygenase genes in Rhodococcus opacus C1 and Rhodococcus sp. WAY2. Microb Genom 2025; 11:001359. [PMID: 40042991 PMCID: PMC11881993 DOI: 10.1099/mgen.0.001359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/15/2025] [Indexed: 05/13/2025] Open
Abstract
Aromatic ring-hydroxylating dioxygenases (ARHDs) play a crucial role in the aerobic biodegradation of both natural and anthropogenic aromatic compounds. Although their ability to process contaminants is not entirely understood, it is thought to have evolved from the transformation of structurally similar secondary plant metabolites (SPMs). Hence, to investigate this connection, we tested a variety of SPMs from the monoterpene and flavonoid classes as carbon sources and transcriptional effectors of several phylogenetically distant ARHD genes involved in the degradation of aromatic pollutants. Specifically, we focused on bphA1, nahA1 and phtA1 in Rhodococcus opacus C1, whose genomic analysis is also presented hereinafter, and bphA1a, nahA1-bphA1b and etbA1ab in Rhodococcus sp. WAY2. Whilst induction was only observed with (R)-carvone for bphA1a and nahA1-bphA1b of strain WAY2, and with p-cymene for nahA1 and nahA1-bphA1b of strains C1 and WAY2, respectively, an extensive inhibition by flavonoids was observed for most of the genes in both strains. To the best of our knowledge, our study is the first to report the effect of flavonoids and monoterpenes on the transcription of nahA1, etbA1 and phtA1 genes. In addition, we show that, in contrast to pseudomonads, many flavonoids inhibit the transcription of the ARHD genes in rhodococci. Thus, our work provides a new perspective on flavonoids as the transcriptional effectors of ARHDs, highlighting the significant variability of these enzymes and the divergent responses that they elicit. Moreover, our results contribute to understanding the complex interactions between microorganisms and SPMs and provide insights into the molecular basis of a number of them.
Collapse
Affiliation(s)
- Andrea Zubrova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Manuela Tadrosova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Jaroslav Semerad
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
- Institute for Environmental Studies, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomas Cajthaml
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
- Institute for Environmental Studies, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Pajer
- Military Health Institute, Ministry of Defence of the Czech Republic, Prague, Czech Republic
| | - Michal Strejcek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Jachym Suman
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| |
Collapse
|
2
|
Chacón M, Dixon N. Genetically encoded biosensors for the circular plastics bioeconomy. Metab Eng Commun 2024; 19:e00255. [PMID: 39737114 PMCID: PMC11683335 DOI: 10.1016/j.mec.2024.e00255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/21/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
Current plastic production and consumption routes are unsustainable due to impact upon climate change and pollution, and therefore reform across the entire value chain is required. Biotechnology offers solutions for production from renewable feedstocks, and to aid end of life recycling/upcycling of plastics. Biology sequence/design space is complex requiring high-throughput analytical methods to facilitate the iterative optimisation, design-build, test-learn (DBTL), cycle of Synthetic Biology. Furthermore, genetic regulatory tools can enable harmonisation between biotechnological demands and the physiological constraints of the selected production host. Genetically encoded biosensors offer a solution for both requirements to facilitate the circular plastic bioeconomy. In this review we present a summary of biosensors developed to date reported to be responsive to plastic precursors/monomers. In addition, we provide a summary of the demonstrated and prospective applications of these biosensors for the construction and deconstruction of plastics. Collectively, this review provides a valuable resource of biosensor tools and enabled applications to support the development of the circular plastics bioeconomy.
Collapse
Affiliation(s)
- Micaela Chacón
- Manchester Institute of Biotechnology (MIB), Department of Chemistry, University of Manchester, Manchester, M1 7DN, UK
| | - Neil Dixon
- Manchester Institute of Biotechnology (MIB), Department of Chemistry, University of Manchester, Manchester, M1 7DN, UK
| |
Collapse
|
3
|
Benning S, Pritsch K, Radl V, Siani R, Wang Z, Schloter M. (Pan)genomic analysis of two Rhodococcus isolates and their role in phenolic compound degradation. Microbiol Spectr 2024; 12:e0378323. [PMID: 38376357 PMCID: PMC10986565 DOI: 10.1128/spectrum.03783-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/25/2024] [Indexed: 02/21/2024] Open
Abstract
The genus Rhodococcus is recognized for its potential to degrade a large range of aromatic substances, including plant-derived phenolic compounds. We used comparative genomics in the context of the broader Rhodococcus pan-genome to study genomic traits of two newly described Rhodococcus strains (type-strain Rhodococcus pseudokoreensis R79T and Rhodococcus koreensis R85) isolated from apple rhizosphere. Of particular interest was their ability to degrade phenolic compounds as part of an integrated approach to treat apple replant disease (ARD) syndrome. The pan-genome of the genus Rhodococcus based on 109 high-quality genomes was open with a small core (1.3%) consisting of genes assigned to basic cell functioning. The range of genome sizes in Rhodococcus was high, from 3.7 to 10.9 Mbp. Genomes from host-associated strains were generally smaller compared to environmental isolates which were characterized by exceptionally large genome sizes. Due to large genomic differences, we propose the reclassification of distinct groups of rhodococci like the Rhodococcus equi cluster to new genera. Taxonomic species affiliation was the most important factor in predicting genetic content and clustering of the genomes. Additionally, we found genes that discriminated between the strains based on habitat. All members of the genus Rhodococcus had at least one gene involved in the pathway for the degradation of benzoate, while biphenyl degradation was mainly restricted to strains in close phylogenetic relationships with our isolates. The ~40% of genes still unclassified in larger Rhodococcus genomes, particularly those of environmental isolates, need more research to explore the metabolic potential of this genus.IMPORTANCERhodococcus is a diverse, metabolically powerful genus, with high potential to adapt to different habitats due to the linear plasmids and large genome sizes. The analysis of its pan-genome allowed us to separate host-associated from environmental strains, supporting taxonomic reclassification. It was shown which genes contribute to the differentiation of the genomes based on habitat, which can possibly be used for targeted isolation and screening for desired traits. With respect to apple replant disease (ARD), our isolates showed genome traits that suggest potential for application in reducing plant-derived phenolic substances in soil, which makes them good candidates for further testing against ARD.
Collapse
Affiliation(s)
- Sarah Benning
- Research Unit for Comparative Microbiome Analysis, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Karin Pritsch
- Research Unit for Environmental Simulations, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Viviane Radl
- Research Unit for Comparative Microbiome Analysis, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Roberto Siani
- Research Unit for Comparative Microbiome Analysis, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Zhongjie Wang
- Research Unit for Comparative Microbiome Analysis, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Chair for Environmental Microbiology, TUM School of Life Sciences, Technical University Munich, Munich, Germany
| |
Collapse
|