1
|
Liu Q, Tong Y, Li Q, Liao M, Wang J. Knowledge, attitudes, and practice of medical students towards the use of benzalkonium chloride in hand sanitization from the perspective of environmental sustainability. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-16. [PMID: 39661332 DOI: 10.1080/09603123.2024.2440906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/07/2024] [Indexed: 12/12/2024]
Abstract
Control measures for disinfectant pollution and related anthropogenic behaviors are required. Benzalkonium chloride (BAC) with widespread use especially in hand sanitization is highlighted as a representative disinfectant emerging contaminant. This cross-sectional survey was conducted to assess the knowledge, attitudes, practice regarding BAC use for hand hygiene among medical students from the perspective of environmental sustainability. Of the 703 responding students, only 3.7% had never used hand sanitizer products containing BAC. But few students paid attention to the "environmental friendliness" property of products when consumption. Mean knowledge test score was 1.90 out of 5, suggesting poor knowledge regarding BAC use. Most students had positive attitudes toward source control of BAC pollution and strong intentions to learn more about environmental knowledge related to BAC and other disinfectants. Data indicated that medical students had positive attitudes but lacked knowledge and practices towards eco-friendly disinfectant use, thus further training and practice standards are required.
Collapse
Affiliation(s)
- Qinghua Liu
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Yongxin Tong
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Qin Li
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Mengfan Liao
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Jun Wang
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Reitz ZL. Predicting metallophore structure and function through genome mining. Methods Enzymol 2024; 702:371-401. [PMID: 39155119 DOI: 10.1016/bs.mie.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Metallophores are small molecule chelators that many microbes use to obtain trace metals from their environment. Through genome mining, where genomes are scanned for metallophore biosynthesis genes, one can not only identify which organisms are likely to produce a metallophore, but also predict the metallophore structure, thus preventing undesired reisolation of known compounds and accelerating characterization. Furthermore, the presence of accessory genes for the transport, utilization, and regulation can suggest the biological function and fate of a metallophore. Modern, user-friendly tools have made powerful genomic analyses accessible to scientists with no bioinformatics experience, but these tools are often not utilized to their full potential. This chapter provides an introduction to metallophore genomics and demonstrates how to use the free, publicly available antiSMASH platform to infer metallophore function and structure.
Collapse
Affiliation(s)
- Zachary L Reitz
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, United States.
| |
Collapse
|
3
|
Ashikur Rahman M, Akter S, Ashrafudoulla M, Anamul Hasan Chowdhury M, Uddin Mahamud AGMS, Hong Park S, Ha SD. Insights into the mechanisms and key factors influencing biofilm formation by Aeromonas hydrophila in the food industry: A comprehensive review and bibliometric analysis. Food Res Int 2024; 175:113671. [PMID: 38129021 DOI: 10.1016/j.foodres.2023.113671] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 12/23/2023]
Abstract
Biofilm formation by Aeromonas hydrophila in the food industry poses significant challenges to food safety and quality. Therefore, this comprehensive review aimed to provide insights into the mechanisms and key factors influencing A. hydrophila biofilm formation. It explores the molecular processes involved in initial attachment, microcolony formation, and biofilm maturation; moreover, it concurrently examines the impact of intrinsic factors, including quorum sensing, cyclic-di-GMP, the efflux pump, and antibiotic resistance, as well as environmental conditions, such as temperature, nutrient availability, and osmotic pressure, on biofilm architecture and resilience. Furthermore, the article highlights the potential of bibliometric analysis as a promising method for conceptualizing the research landscape of and identifying knowledge gaps in A. hydrophila biofilm research. The findings underscore the requirement for focused interventions that prevent biofilm development and raise food sector safety. The consolidation of current information and incorporation of bibliometric analysis enhances existing understanding of A. hydrophila biofilm formation and offers insights for future research and control strategies within a food industry context.
Collapse
Affiliation(s)
- Md Ashikur Rahman
- School of Food Science and Technology, Chung-Ang University, Anseong-Si, Republic of Korea; Bangladesh Fisheries Research Institute, Bangladesh
| | - Shirin Akter
- School of Food Science and Technology, Chung-Ang University, Anseong-Si, Republic of Korea; Department of Fisheries and Marine Bioscience, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Md Ashrafudoulla
- School of Food Science and Technology, Chung-Ang University, Anseong-Si, Republic of Korea
| | | | | | - Si Hong Park
- Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Sang-Do Ha
- School of Food Science and Technology, Chung-Ang University, Anseong-Si, Republic of Korea.
| |
Collapse
|
4
|
Liao M, Wei S, Zhao J, Wang J, Fan G. Risks of benzalkonium chlorides as emerging contaminants in the environment and possible control strategies from the perspective of ecopharmacovigilance. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115613. [PMID: 37862750 DOI: 10.1016/j.ecoenv.2023.115613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
An unprecedented increase in the use of disinfection products triggered by the coronavirus disease 2019 (COVID-19) pandemic is resulting in aggravating environmental loads of disinfectants as emerging contaminants, which has been considered a cause for worldwide secondary disasters. This review analyzed the literature published in the last decade about occurrence, bioaccumulation, and possible environmental risks of benzalkonium chlorides (BKCs) as emerging contaminants. Results indicated that BKCs globally occurred in municipal wastewater, surface water, groundwater, reclaimed water, sludge, sediment, soil, roof runoff, and residential dust samples across 13 countries. The maximum residual levels of 30 mg/L and 421 μg/g were reported in water and solid environmental samples, respectively. Emerging evidences suggested possible bioaccumulation of BKCs in plants, even perhaps humans. Environmentally relevant concentrations of BKCs exert potential adverse impacts on aquatic and terrestrial species, including genotoxicity, respiratory toxicity, behavioural effects and neurotoxicity, endocrine disruption and reproductive impairment, phytotoxicity, etc. Given the intrinsic biocidal and preservative properties of disinfectants, the inductive effects of residual BKCs in environment in terms of resistance and imbalance of microorganisms have been paid special attention. Considering the similarities of disinfectants to pharmaceuticals, from the perspective of ecopharmacovigilance (EPV), a well-established strategy for pharmaceutical emerging contaminants, we use the control of BKC pollution as a case, and provide some recommendations for employing the EPV measures to manage environmental risks posed by disinfectant emerging contaminants.
Collapse
Affiliation(s)
- Mengfan Liao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Songyi Wei
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jinru Zhao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jun Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Guangquan Fan
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
5
|
Zhang G, Zhang L, Sha Y, Chen Q, Lin N, Zhao J, Zhang Y, Ji Y, Jiang W, Zhang X, Li Q, Lu J, Lin X, Li K, Zhang H, Bao Q, Lu J, Hu Y, Zhu T. Identification and characterization of a novel 6'-N-aminoglycoside acetyltransferase AAC(6')-Va from a clinical isolate of Aeromonas hydrophila. Front Microbiol 2023; 14:1229593. [PMID: 37920263 PMCID: PMC10619662 DOI: 10.3389/fmicb.2023.1229593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023] Open
Abstract
Background Aeromonas species have been identified as agents responsible for various diseases in both humans and animals. Multidrug-resistant Aeromonas strains pose a significant public health threat due to their emergence and spread in clinical settings and the environment. The aim of this study was to determine a novel resistance mechanism against aminoglycoside antimicrobials in a clinical isolate. Methods The function of aac(6')-Va was verified by gene cloning and antibiotic susceptibility tests. To explore the in vivo activity of the enzyme, recombinant proteins were expressed, and enzyme kinetics were tested. To determine the molecular background and mechanism of aac(6')-Va, whole-genome sequencing and bioinformatic analysis were performed. Results The novel aminoglycoside N-acetyltransferase gene aac(6')-Va confers resistance to several aminoglycosides. Among the antimicrobials tested, ribostamycin showed the highest increase (128-fold) in the minimum inhibitory concentration (MIC) compared with the control strains. According to the MIC results of the cloned aac(6')-Va, AAC(6')-Va also showed the highest catalytic efficiency for ribostamycin [kcat/Km ratio = (3.35 ± 0.17) × 104 M-1 s-1]. Sharing the highest amino acid identity of 54.68% with AAC(6')-VaIc, the novel aminoglycoside N-acetyltransferase constituted a new branch of the AAC(6') family due to its different resistance profiles. The gene context of aac(6')-Va and its close relatives was conserved in the genomes of species of the genus Aeromonas. Conclusion The novel resistance gene aac(6')-Va confers resistance to several aminoglycosides, especially ribostamycin. Our finding of a novel resistance gene in clinical A. hydrophila will help us develop more effective treatments for this pathogen's infections.
Collapse
Affiliation(s)
- Guozhi Zhang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lei Zhang
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Clinical Laboratory, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | - Yuning Sha
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qiaoying Chen
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Naru Lin
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jingxuan Zhao
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuan Zhang
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yongan Ji
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Weiyan Jiang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xueya Zhang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qiaoling Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Junwan Lu
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
| | - Xi Lin
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kewei Li
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hailin Zhang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qiyu Bao
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
| | - Jun Lu
- Department of Clinical Laboratory, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | - Yunliang Hu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Tingting Zhu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|