1
|
Magne K, Massot S, Folletti T, Sauviac L, Ait-Salem E, Pires I, Saad MM, Eida AA, Bougouffa S, Jugan A, Rolli E, Forquet R, Puech-Pages V, Maillet F, Bernal G, Gibelin C, Hirt H, Gruber V, Peyraud R, Vailleau F, Gourion B, Ratet P. Atypical rhizobia trigger nodulation and pathogenesis on the same legume hosts. Nat Commun 2024; 15:9246. [PMID: 39461961 PMCID: PMC11513132 DOI: 10.1038/s41467-024-53388-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The emergence of commensalism and mutualism often derives from ancestral parasitism. However, in the case of rhizobium-legume interactions, bacterial strains displaying both pathogenic and nodulation features on a single host have not been described yet. Here, we isolated such a bacterium from Medicago nodules. On the same plant genotypes, the T4 strain can induce ineffective nodules in a highly competitive way and behave as a harsh parasite triggering plant death. The T4 strain presents this dual ability on multiple legume species of the Inverted Repeat-Lacking Clade, the output of the interaction relying on the developmental stage of the plant. Genomic and phenotypic clustering analysis show that T4 belongs to the nonsymbiotic Ensifer adhaerens group and clusters together with T173, another strain harboring this dual ability. In this work, we identify a bacterial clade that includes rhizobial strains displaying both pathogenic and nodulating abilities on a single legume host.
Collapse
Affiliation(s)
- Kévin Magne
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Sophie Massot
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
| | - Tifaine Folletti
- Laboratoire des Interactions Plantes Microbes Environnement, Université de Toulouse, INRAE, CNRS, 31326, Castanet-Tolosan, France
| | - Laurent Sauviac
- Laboratoire des Interactions Plantes Microbes Environnement, Université de Toulouse, INRAE, CNRS, 31326, Castanet-Tolosan, France
| | - Elhosseyn Ait-Salem
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
| | - Ilona Pires
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
| | - Maged M Saad
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Abdul Aziz Eida
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Salim Bougouffa
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Adrien Jugan
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
| | - Eleonora Rolli
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133, Milan, Italy
| | | | - Virginie Puech-Pages
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Toulouse INP, Université de Toulouse, Toulouse, France
- Metatoul-AgromiX Platform, MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, LRSV, Toulouse, France
| | - Fabienne Maillet
- Laboratoire des Interactions Plantes Microbes Environnement, Université de Toulouse, INRAE, CNRS, 31326, Castanet-Tolosan, France
| | - Gautier Bernal
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
| | - Chrystel Gibelin
- Laboratoire des Interactions Plantes Microbes Environnement, Université de Toulouse, INRAE, CNRS, 31326, Castanet-Tolosan, France
| | - Heribert Hirt
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Véronique Gruber
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France
| | | | - Fabienne Vailleau
- Laboratoire des Interactions Plantes Microbes Environnement, Université de Toulouse, INRAE, CNRS, 31326, Castanet-Tolosan, France
| | - Benjamin Gourion
- Laboratoire des Interactions Plantes Microbes Environnement, Université de Toulouse, INRAE, CNRS, 31326, Castanet-Tolosan, France.
| | - Pascal Ratet
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France.
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France.
| |
Collapse
|
2
|
Bromfield ESP, Cloutier S. Bradyrhizobium ontarionense sp. nov., a novel bacterial symbiont isolated from Aeschynomene indica (Indian jointvetch), harbours photosynthesis, nitrogen fixation and nitrous oxide (N 2O) reductase genes. Antonie Van Leeuwenhoek 2024; 117:69. [PMID: 38647727 PMCID: PMC11035471 DOI: 10.1007/s10482-024-01940-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/02/2024] [Indexed: 04/25/2024]
Abstract
A novel bacterial symbiont, strain A19T, was previously isolated from a root-nodule of Aeschynomene indica and assigned to a new lineage in the photosynthetic clade of the genus Bradyrhizobium. Here data are presented for the detailed genomic and taxonomic analyses of novel strain A19T. Emphasis is placed on the analysis of genes of practical or ecological significance (photosynthesis, nitrous oxide reductase and nitrogen fixation genes). Phylogenomic analysis of whole genome sequences as well as 50 single-copy core gene sequences placed A19T in a highly supported lineage distinct from described Bradyrhizobium species with B. oligotrophicum as the closest relative. The digital DNA-DNA hybridization and average nucleotide identity values for A19T in pair-wise comparisons with close relatives were far lower than the respective threshold values of 70% and ~ 96% for definition of species boundaries. The complete genome of A19T consists of a single 8.44 Mbp chromosome and contains a photosynthesis gene cluster, nitrogen-fixation genes and genes encoding a complete denitrifying enzyme system including nitrous oxide reductase implicated in the reduction of N2O, a potent greenhouse gas, to inert dinitrogen. Nodulation and type III secretion system genes, needed for nodulation by most rhizobia, were not detected. Data for multiple phenotypic tests complemented the sequence-based analyses. Strain A19T elicits nitrogen-fixing nodules on stems and roots of A. indica plants but not on soybeans or Macroptilium atropurpureum. Based on the data presented, a new species named Bradyrhizobium ontarionense sp. nov. is proposed with strain A19T (= LMG 32638T = HAMBI 3761T) as the type strain.
Collapse
Affiliation(s)
- Eden S P Bromfield
- Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, K1A 0C6, Canada.
| | - Sylvie Cloutier
- Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, K1A 0C6, Canada
| |
Collapse
|
4
|
Laffont C, Frugier F. Rhizobium symbiotic efficiency meets CEP signaling peptides. THE NEW PHYTOLOGIST 2024; 241:24-27. [PMID: 37924218 DOI: 10.1111/nph.19367] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/13/2023] [Indexed: 11/06/2023]
Abstract
C-terminally encoded peptides (CEP) signaling peptides are drivers of systemic pathways regulating nitrogen (N) acquisition in different plants, from Arabidopsis to legumes, depending on mineral N availability (e.g. nitrate) and on the whole plant N demand. Recent studies in the Medicago truncatula model legume revealed how root-produced CEP peptides control the root competence for endosymbiosis with N fixing rhizobia soil bacteria through the activity of the Compact Root Architecture 2 (CRA2) CEP receptor in shoots. Among CEP genes, MtCEP7 was shown to be tightly linked to nodulation, and the dynamic temporal regulation of its expression reflects the plant ability to maintain a different symbiotic root competence window depending on the symbiotic efficiency of the rhizobium strain, as well as to reinitiate a new window of root competence for nodulation.
Collapse
Affiliation(s)
- Carole Laffont
- Institute of Plant Sciences Paris Saclay (IPS2), CNRS, Paris-Saclay University, Paris-Cité University, INRAE, Univ d'Evry, Bat. 630, Avenue des Sciences, Gif-sur-Yvette, 91190, France
| | - Florian Frugier
- Institute of Plant Sciences Paris Saclay (IPS2), CNRS, Paris-Saclay University, Paris-Cité University, INRAE, Univ d'Evry, Bat. 630, Avenue des Sciences, Gif-sur-Yvette, 91190, France
| |
Collapse
|
6
|
Ershov AP, Babich TL, Grouzdev DS, Sokolova DS, Semenova EM, Avtukh AN, Poltaraus AB, Ianutsevich EA, Nazina TN. Genome Analysis and Potential Ecological Functions of Members of the Genus Ensifer from Subsurface Environments and Description of Ensifer oleiphilus sp. nov. Microorganisms 2023; 11:2314. [PMID: 37764159 PMCID: PMC10538136 DOI: 10.3390/microorganisms11092314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
The current work deals with genomic analysis, possible ecological functions, and biotechnological potential of two bacterial strains, HO-A22T and SHC 2-14, isolated from unique subsurface environments, the Cheremukhovskoe oil field (Tatarstan, Russia) and nitrate- and radionuclide-contaminated groundwater (Tomsk region, Russia), respectively. New isolates were characterized using polyphasic taxonomy approaches and genomic analysis. The genomes of the strains HO-A22T and SHC 2-14 contain the genes involved in nitrate reduction, hydrocarbon degradation, extracellular polysaccharide synthesis, and heavy metal detoxification, confirming the potential for their application in various environmental biotechnologies. Genomic data were confirmed by cultivation studies. Both strains were found to be neutrophilic, chemoorganotrophic, facultatively anaerobic bacteria, growing at 15-33 °C and 0-1.6% NaCl (w/v). The 16S rRNA gene sequences of the strains were similar to those of the type strains of the genus Ensifer (99.0-100.0%). Nevertheless, genomic characteristics of strain HO-A22T were below the thresholds for species delineation: the calculated average nucleotide identity (ANI) values were 83.7-92.4% (<95%), and digital DNA-DNA hybridization (dDDH) values were within the range of 25.4-45.9% (<70%), which supported our conclusion that HO-A22T (=VKM B-3646T = KCTC 92427T) represented a novel species of the genus Ensifer, with the proposed name Ensifer oleiphilus sp. nov. Strain SHC 2-14 was assigned to the species 'Ensifer canadensis', which has not been validly published. This study expanded the knowledge about the phenotypic diversity among members of the genus Ensifer and its potential for the biotechnologies of oil recovery and radionuclide pollution treatment.
Collapse
Affiliation(s)
- Alexey P. Ershov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (A.P.E.); (T.L.B.); (D.S.S.); (E.M.S.); (E.A.I.)
| | - Tamara L. Babich
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (A.P.E.); (T.L.B.); (D.S.S.); (E.M.S.); (E.A.I.)
| | | | - Diyana S. Sokolova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (A.P.E.); (T.L.B.); (D.S.S.); (E.M.S.); (E.A.I.)
| | - Ekaterina M. Semenova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (A.P.E.); (T.L.B.); (D.S.S.); (E.M.S.); (E.A.I.)
| | - Alexander N. Avtukh
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Andrey B. Poltaraus
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Elena A. Ianutsevich
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (A.P.E.); (T.L.B.); (D.S.S.); (E.M.S.); (E.A.I.)
| | - Tamara N. Nazina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (A.P.E.); (T.L.B.); (D.S.S.); (E.M.S.); (E.A.I.)
| |
Collapse
|