1
|
Oren A, Göker M. Validation List no. 219. Valid publication of new names and new combinations effectively published outside the IJSEM. Int J Syst Evol Microbiol 2024; 74:006452. [PMID: 39360699 PMCID: PMC11447935 DOI: 10.1099/ijsem.0.006452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Indexed: 10/04/2024] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - Markus Göker
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, 38124 Braunschweig, Germany
| |
Collapse
|
2
|
Lin SY, Lin TY, Hameed A, Tsai CF, Young CC. Description of Aliirhizobium terrae sp. nov., A Plant Growth-Promoting Bacterium Isolated from a Maize-Rice Rotation Agriculture Field. Curr Microbiol 2024; 81:328. [PMID: 39186081 DOI: 10.1007/s00284-024-03845-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
A polyphasic taxonomic approach was used to characterize a novel bacterium, designated strain CC-CFT758T, isolated from a maize-rice rotation agriculture field in Taiwan. The cells are aerobic, Gram-stain-negative, rod-shaped, positive for catalase and oxidase, and grow at 20-30 °C (optimal 30 ℃), at pH 6.0-8.0 (optimal 8.0), and with 0-4% (w/v) NaCl (optimum, 2-3%). Phylogenetic analysis based on 16S rRNA gene sequencing, the strain CC-CFT758T belongs to the genus "Aliirhizobium" of the family Rhizobiaceae. The closest known relatives of this strain are "Aliirhizobium wenxiniae" 166T (with 98.7% similarity), "Aliirhizobium cellulosilyticum" SEMIA 448T (with 97.9% similarity), and "Aliirhizobium smilacinae" PTYR-5T (with 97.0% similarity). The genome size was 5.9 Mbp, with a G + C content of 60.6%. Values of digital DNA-DNA hybridization between the strain and closely related species were 29.5% for "Ali. cellulosilyticum", and 23.9% for "Ali. wenxiniae" and "Ali. smilacinae". Strain CC-CFT758T exhibited the highest orthologous average nucleotide identity (OrthoANI) values with members of the genus "Aliirhizobium", ranging from 80.4 to 81.6% (n = 3). Chemotaxonomical analysis indicated that strain CC-CFT758T contained C16:0, C16:0 3OH, C19:0 cyclo ω8c, C14:0 3OH/iso-C16:1 I, and C18:2 ω6,9c/ante C18:0 as dominant fatty acids, and the major polyamines were putrescine and spermidine. The polar lipids comprised diphosphatidylglycerol, phosphatidylcholin, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, seven unidentified aminolipids, three unidentified phospholipids, and two unidentified polar lipids. Strain CC-CFT758T exhibited distinct phylogenetic, phenotypic, and chemotaxonomic characteristics, as well as unique results in comparative analysis of 16S rRNA gene sequence, OrthoANI, AAI, dDDH, and phylogenomic placement. Therefore, this strain represents a new species of the genus "Aliirhizobium", for which the name Aliirhizobium terrae sp. nov. is proposed, with the type strain is CC-CFT758T (= BCRC 81364T = JCM 35482T).
Collapse
Affiliation(s)
- Shih-Yao Lin
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, 145, XingDa Rd, Taichung, 40227, Taiwan
| | - Tzu-Yu Lin
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Asif Hameed
- Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India
| | - Chia-Fang Tsai
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, 145, XingDa Rd, Taichung, 40227, Taiwan
| | - Chiu-Chung Young
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, 145, XingDa Rd, Taichung, 40227, Taiwan.
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 145, XingDa Rd, Taichung, 40227, Taiwan.
| |
Collapse
|
3
|
Yin J, He M, Liu XX, Ren CB, Liu HH, Luo H, Chen G, Wang ZF, Debnath SC, Wang PM, Chen HX, Zheng DQ. Peteryoungia algae sp. nov. isolated from seaweeds of Gouqi Island, China, and its unique genetic features among Peteryoungia strains. Antonie Van Leeuwenhoek 2024; 117:112. [PMID: 39133351 DOI: 10.1007/s10482-024-02010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
A Gram-stain-negative, light khaki, strictly aerobic, rod-shaped, motile via multiple flagella, and catalase- and oxidase-positive bacterium, designated as SSM4.3T, was isolated from the seaweed of Gouqi Island in the East China Sea. The novel isolate grows at 0-5.0% NaCl concentrations (w/v) (optimum 1%), pH 5.0-9.0 (optimum pH 7.0), and 15-37 °C (optimum 30 °C). The 16S rRNA gene sequences-based phylogeny indicates that the novel marine isolate belongs to the family Rhizobiaceae and that it shared the greatest sequence similarity (98.9%) with Peteryoungia rhizophila CGMCC 1.15691T. This classification was also supported by phylogenetic analysis using core genes. The predominant fatty acids (≥ 10%) of the strain were identified as C18:1 ω7c/C18:1 ω6c. Q-10 was identified as the major isoprenoid quinone, with trace levels of Q-9 present. The major polar lipids were identified as diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. The complete genome size of strain SSM4.3T is 4.39 Mb with a DNA G+C content of 61.3%. The average nucleotide identity, digital DNA-DNA hybridization, and average amino acid identity values between the genomes of strain SSM4.3T and its closely related representatives were 74.80-86.93%, 20.00-32.30%, and 70.30-91.52%, respectively. Phylogenetic analysis, grounded on the core genes, reveals the evolutionary relationship between SSM4.3T and other Peteryoungia strains. Pan-genomics analysis of 8 previously classified Peteryoungia species and SSM4.3T revealed their unique genetic features and functions. Overall, strain SSM4.3T was considered to be a new species of the Peteryoungia genus; the name Peteryoungia algae sp. nov. has been proposed, with type strain SSM4.3T (= LMG 32561 = MCCC 1K07170).
Collapse
Affiliation(s)
- Jun Yin
- State Key Laboratory of Biobased Transportation Fuel Technology, Ocean College, Zhejiang University, Room 377, Marine Science Building, No.1 Zheda Road, Dinghai District, Zhoushan, 316021, Zhejiang, China
| | - Min He
- State Key Laboratory of Biobased Transportation Fuel Technology, Ocean College, Zhejiang University, Room 377, Marine Science Building, No.1 Zheda Road, Dinghai District, Zhoushan, 316021, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, 572000, China
| | - Xiao-Xiao Liu
- Hainan Institute of Zhejiang University, Sanya, 572000, China
| | - Chang-Bin Ren
- Hainan Institute of Zhejiang University, Sanya, 572000, China
| | - Hou-Hong Liu
- Hainan Institute of Zhejiang University, Sanya, 572000, China
| | - Hai Luo
- Hainan Institute of Zhejiang University, Sanya, 572000, China
| | - Gen Chen
- Hainan Institute of Zhejiang University, Sanya, 572000, China
| | - Ze-Fei Wang
- Hainan Institute of Zhejiang University, Sanya, 572000, China
| | - Sanjit Chandra Debnath
- State Key Laboratory of Biobased Transportation Fuel Technology, Ocean College, Zhejiang University, Room 377, Marine Science Building, No.1 Zheda Road, Dinghai District, Zhoushan, 316021, Zhejiang, China
- Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, Devon, EX4 4HB, UK
| | - Pin-Mei Wang
- State Key Laboratory of Biobased Transportation Fuel Technology, Ocean College, Zhejiang University, Room 377, Marine Science Building, No.1 Zheda Road, Dinghai District, Zhoushan, 316021, Zhejiang, China
| | | | - Dao-Qiong Zheng
- State Key Laboratory of Biobased Transportation Fuel Technology, Ocean College, Zhejiang University, Room 377, Marine Science Building, No.1 Zheda Road, Dinghai District, Zhoushan, 316021, Zhejiang, China.
- Hainan Institute of Zhejiang University, Sanya, 572000, China.
| |
Collapse
|
4
|
Golubev S, Rasterkovskaya M, Sungurtseva I, Burov A, Muratova A. Phenanthrene-Degrading and Nickel-Resistant Neorhizobium Strain Isolated from Hydrocarbon-Contaminated Rhizosphere of Medicago sativa L. Microorganisms 2024; 12:1586. [PMID: 39203428 PMCID: PMC11356111 DOI: 10.3390/microorganisms12081586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024] Open
Abstract
Pollutant degradation and heavy-metal resistance may be important features of the rhizobia, making them promising agents for environment cleanup biotechnology. The degradation of phenanthrene, a three-ring polycyclic aromatic hydrocarbon (PAH), by the rhizobial strain Rsf11 isolated from the oil-polluted rhizosphere of alfalfa and the influence of nickel ions on this process were studied. On the basis of whole-genome and polyphasic taxonomy, the bacterium Rsf11 represent a novel species of the genus Neorhizobium, so the name Neorhizobium phenanthreniclasticum sp. nov. was proposed. Analysis of phenanthrene degradation by the Rsf1 strain revealed 1-hydroxy-2-naphthoic acid as the key intermediate and the activity of two enzymes apparently involved in PAH degradation. It was also shown that the nickel resistance of Rsf11 was connected with the extracellular adsorption of metal by EPS. The joint presence of phenanthrene and nickel in the medium reduced the degradation of PAH by the microorganism, apparently due to the inhibition of microbial growth but not due to the inhibition of the activity of the PAH degradation enzymes. Genes potentially involved in PAH catabolism and nickel resistance were discovered in the microorganism studied. N. phenanthreniclasticum strain Rsf11 can be considered as a promising candidate for use in the bioremediation of mixed PAH-heavy-metal contamination.
Collapse
Affiliation(s)
| | | | | | | | - Anna Muratova
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), Saratov 410049, Russia; (S.G.); (M.R.); (I.S.); (A.B.)
| |
Collapse
|
5
|
He M, Chen G, Li KJ, Tang XX, Liu XX, Ren CB, Liu HH, Luo H, Debnath SC, Wang PM, Chen HX, Zheng DQ. Characterization and Genomic Analysis of Affinirhizobium gouqiense sp. nov. Isolated from Seawater of Gouqi Island Located in the East China Sea and Reclassification of Rhizobium lemnae to the Genus Affinirhizobium as Affinirhizobium lemnae comb. nov. Curr Microbiol 2024; 81:283. [PMID: 39066927 DOI: 10.1007/s00284-024-03807-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
A novel bacterium designated as SSA5.23T was isolated from seawater. Cells of SSA5.23T are Gram-stain-negative, short, rod-shaped, and exhibit motility via numerous peritrichous flagella. The strain could grow at temperatures ranging from 15 to 35 °C (optimum at 25 °C), in a salinity range of 0-5.0% (w/v) NaCl, and within a pH range of 6.0-9.0 (optimum at pH 7.0). The predominant cellular fatty acid of SSA5.23T was C18:1 ω7c/C18:1 ω6c, and the major respiratory quinones were Q-9 and Q-10. Diphosphatidylglycerol, phosphatidylethanolamine, and phosphatidylglycerol were identified as the primary polar lipids. The complete genome (5.47 Mb) of SSA5.23T comprises of a circular chromosome of 3.64 Mb and three plasmids, specifically sized at 59.73 kb, 227.82 kb, and 1.54 Mb, respectively. Certain genes located on the plasmids play roles in denitrification, oxidative stress resistance, and osmotic tolerance, which likely contribute to the adaptability of this strain in marine conditions. Core-proteome average amino acid identity analysis effectively identified the strain's affiliation with the genus Affinirhizobium, showing the highest value (89.9%) with Affinirhizobium pseudoryzae DSM 19479T. This classification was further supported by the phylogenetic analysis of concatenated alignment of 170 single-copy orthologous proteins. When compared to related reference strains, SSA5.23T displayed an average nucleotide identity ranging from 74.9 to 80.3% and digital DNA-DNA hybridization values ranging from 19.9 to 23.9%. Our findings confirmed that strain SSA5.23T represents a novel species of the genus Affinirhizobium, for which the name Affinirhizobium gouqiense sp. nov. (type strain SSA5.23T = LMG 32560T = MCCC 1K07165T) was suggested.
Collapse
Affiliation(s)
- Min He
- Hainan Institute, Zhejiang University, Sanya, 572000, China
| | - Gen Chen
- Hainan Institute, Zhejiang University, Sanya, 572000, China
| | - Ke-Jing Li
- Ocean College, Zhejiang University, Zhoushan, 316021, China
| | - Xing-Xing Tang
- Ocean College, Zhejiang University, Zhoushan, 316021, China
| | - Xiao-Xiao Liu
- Hainan Institute, Zhejiang University, Sanya, 572000, China
| | - Chang-Bin Ren
- Hainan Institute, Zhejiang University, Sanya, 572000, China
| | - Hou-Hong Liu
- Hainan Institute, Zhejiang University, Sanya, 572000, China
| | - Hai Luo
- Hainan Institute, Zhejiang University, Sanya, 572000, China
| | - Sanjit Chandra Debnath
- Ocean College, Zhejiang University, Zhoushan, 316021, China
- Biosciences, University of Exeter, Exeter, Geoffrey Pope Building, Devon, EX4 4HB, UK
| | - Pin-Mei Wang
- Ocean College, Zhejiang University, Zhoushan, 316021, China
| | | | - Dao-Qiong Zheng
- Hainan Institute, Zhejiang University, Sanya, 572000, China.
- Ocean College, Zhejiang University, Zhoushan, 316021, China.
| |
Collapse
|
6
|
van Lill M, Venter SN, Muema EK, Palmer M, Chan WY, Beukes CW, Steenkamp ET. SeqCode facilitates naming of South African rhizobia left in limbo. Syst Appl Microbiol 2024; 47:126504. [PMID: 38593622 DOI: 10.1016/j.syapm.2024.126504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
South Africa is well-known for the diversity of its legumes and their nitrogen-fixing bacterial symbionts. However, in contrast to their plant partners, remarkably few of these microbes (collectively referred to as rhizobia) from South Africa have been characterised and formally described. This is because the rules of the International Code of Nomenclature of Prokaryotes (ICNP) are at odds with South Africa's National Environmental Management: Biodiversity Act and its associated regulations. The ICNP requires that a culture of the proposed type strain for a novel bacterial species be deposited in two international culture collections and be made available upon request without restrictions, which is not possible under South Africa's current national regulations. Here, we describe seven new Mesorhizobium species obtained from root nodules of Vachellia karroo, an iconic tree legume distributed across various biomes in southern Africa. For this purpose, 18 rhizobial isolates were delineated into putative species using genealogical concordance, after which their plausibility was explored with phenotypic characters and average genome relatedness. For naming these new species, we employed the rules of the recently published Code of Nomenclature of Prokaryotes described from Sequence Data (SeqCode), which utilizes genome sequences as nomenclatural types. The work presented in this study thus provides an illustrative example of how the SeqCode allows for a standardised approach for naming cultivated organisms for which the deposition of a type strain in international culture collections is currently problematic.
Collapse
Affiliation(s)
- Melandré van Lill
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| | - Stephanus N Venter
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Esther K Muema
- Department of Soil Science, Faculty of AgriSciences, Stellenbosch University, South Africa
| | - Marike Palmer
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Wai Y Chan
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | | | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
7
|
diCenzo GC, Yang Y, Young JPW, Kuzmanović N. Refining the taxonomy of the order Hyphomicrobiales ( Rhizobiales) based on whole genome comparisons of over 130 type strains. Int J Syst Evol Microbiol 2024; 74. [PMID: 38619983 DOI: 10.1099/ijsem.0.006328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
The alphaproteobacterial order Hyphomicrobiales consists of 38 families comprising at least 152 validly published genera as of January 2024. The order Hyphomicrobiales was first described in 1957 and underwent important revisions in 2020. However, we show that several inconsistencies in the taxonomy of this order remain and we argue that there is a need for a consistent framework for defining families within the order. We propose a common genome-based framework for defining families within the order Hyphomicrobiales, suggesting that families represent monophyletic groups in core-genome phylogenies that share pairwise average amino acid identity values above ~75 % when calculated from a core set of 59 proteins. Applying this framework, we propose the formation of four new families and to reassign the genera Salaquimonas, Rhodoblastus, and Rhodoligotrophos into Salaquimonadaceae fam. nov., Rhodoblastaceae fam. nov., and Rhodoligotrophaceae fam. nov., respectively, and the genera Albibacter, Chenggangzhangella, Hansschlegelia, and Methylopila into Methylopilaceae fam. nov. We further propose to unify the families Bartonellaceae, Brucellaceae, Phyllobacteriaceae, and Notoacmeibacteraceae as Bartonellaceae; the families Segnochrobactraceae and Pseudoxanthobacteraceae as Segnochrobactraceae; the families Lichenihabitantaceae and Lichenibacteriaceae as Lichenihabitantaceae; and the families Breoghaniaceae and Stappiaceae as Stappiaceae. Lastly, we propose to reassign several genera to existing families. Specifically, we propose to reassign the genus Pseudohoeflea to the family Rhizobiaceae; the genera Oricola, Roseitalea, and Oceaniradius to the family Ahrensiaceae; the genus Limoniibacter to the emended family Bartonellaceae; the genus Faunimonas to the family Afifellaceae; and the genus Pseudochelatococcus to the family Chelatococcaceae. Our data also support the recent proposal to reassign the genus Prosthecomicrobium to the family Kaistiaceae.
Collapse
Affiliation(s)
- George C diCenzo
- Department of Biology, Queen's University, Kingston, ON, K7P 0S7, Canada
| | - Yuqi Yang
- Department of Biology, Queen's University, Kingston, ON, K7P 0S7, Canada
| | - J Peter W Young
- Department of Biology, University of York, York, YO10 5DD, UK
| | - Nemanja Kuzmanović
- Institute for Plant Protection in Horticulture and Urban Green, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Braunschweig, 38104, Germany
| |
Collapse
|
8
|
Mousavi SA, Young JPW. International Committee on Systematics of Prokaryotes Subcommittee on the Taxonomy of Rhizobia and Agrobacteria: Minutes of the closed annual meeting, videoconference on 2 October 2023, followed by online discussion until 31 December 2023. Int J Syst Evol Microbiol 2024; 74. [PMID: 38416034 DOI: 10.1099/ijsem.0.006276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Affiliation(s)
| | - J Peter W Young
- Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|