1
|
Zeng Y, Feng R, Huang C, Liu J, Yang F. Antibiotic Resistance Genes in Agricultural Soils: A Comprehensive Review of the Hidden Crisis and Exploring Control Strategies. TOXICS 2025; 13:239. [PMID: 40278556 PMCID: PMC12031239 DOI: 10.3390/toxics13040239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/16/2025] [Accepted: 03/20/2025] [Indexed: 04/26/2025]
Abstract
This paper aims to review the sources, occurrence patterns, and potential risks of antibiotic resistance genes (ARGs) in agricultural soils and discuss strategies for their reduction. The pervasive utilization of antibiotics has led to the accumulation of ARGs in the soil. ARGs can be transferred among microorganisms via horizontal gene transfer, thereby increasing the likelihood of resistance dissemination and heightening the threat to public health. In this study, we propose that physical, chemical, and bioremediation approaches, namely electrokinetic remediation, advanced oxidation, and biochar application, can effectively decrease the abundance of ARGs in the soil. This study also highlights the significance of various control measures, such as establishing a strict regulatory mechanism for veterinary drugs, setting standards for the control of ARGs in organic fertilizers, and conducting technical guidance and on-farm soil monitoring to reduce the environmental spread of ARGs and protect public health.
Collapse
Affiliation(s)
- Yuanye Zeng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (Y.Z.); (C.H.)
| | - Runqiu Feng
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (R.F.); (J.L.)
| | - Chengcheng Huang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (Y.Z.); (C.H.)
| | - Jie Liu
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (R.F.); (J.L.)
| | - Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (Y.Z.); (C.H.)
- Agro-Ecosystem, National Observation and Research Station, Dali 671000, China
| |
Collapse
|
2
|
Ifedinezi OV, Nnaji ND, Anumudu CK, Ekwueme CT, Uhegwu CC, Ihenetu FC, Obioha P, Simon BO, Ezechukwu PS, Onyeaka H. Environmental Antimicrobial Resistance: Implications for Food Safety and Public Health. Antibiotics (Basel) 2024; 13:1087. [PMID: 39596781 PMCID: PMC11591122 DOI: 10.3390/antibiotics13111087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Antimicrobial resistance (AMR) is a serious global health issue, aggravated by antibiotic overuse and misuse in human medicine, animal care, and agriculture. This study looks at the different mechanisms that drive AMR, such as environmental contamination, horizontal gene transfer, and selective pressure, as well as the severe implications of AMR for human and animal health. This study demonstrates the need for concerted efforts across the scientific, healthcare, agricultural, and policy sectors to control the emergence of AMR. Some crucial strategies discussed include developing antimicrobial stewardship (AMS) programs, encouraging targeted narrow-spectrum antibiotic use, and emphasizing the significance of strict regulatory frameworks and surveillance systems, like the Global Antimicrobial Resistance and Use Surveillance System (GLASS) and the Access, Watch, and Reserve (AWaRe) classification. This study also emphasizes the need for national and international action plans in combating AMR and promotes the One Health strategy, which unifies environmental, animal, and human health. This study concludes that preventing the spread of AMR and maintaining the effectiveness of antibiotics for future generations requires a comprehensive, multidisciplinary, and internationally coordinated strategy.
Collapse
Affiliation(s)
| | - Nnabueze Darlington Nnaji
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
- Department of Microbiology, University of Nigeria, Nsukka 410001, Nigeria
| | | | | | | | | | - Promiselynda Obioha
- Microbiology Research Unit, School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK
| | - Blessing Oteta Simon
- Department of Public Health Sciences, National Open University of Nigeria, Abuja 900108, Nigeria
| | | | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
3
|
Gama GSP, Pimenta AS, Feijó FMC, de Azevedo TKB, de Melo RR, de Andrade GS. The Potential of Wood Vinegar to Replace Antimicrobials Used in Animal Husbandry-A Review. Animals (Basel) 2024; 14:381. [PMID: 38338024 PMCID: PMC10854697 DOI: 10.3390/ani14030381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/16/2023] [Accepted: 12/27/2023] [Indexed: 02/12/2024] Open
Abstract
The indiscriminate use of antimicrobials in animal husbandry can result in various types of environmental contamination. Part of the dose of these products is excreted, still active, in the animals' feces and urine. These excreta are widely used as organic fertilizers, which results in contamination with antimicrobial molecules. The impacts can occur in several compartments, such as soil, groundwater, and surface watercourses. Also, contamination by antimicrobials fed or administrated to pigs, chickens, and cattle can reach the meat, milk, and other animal products, which calls into question the sustainability of using these products as part of eco-friendly practices. Therefore, a search for alternative natural products is required to replace the conventional antimicrobials currently used in animal husbandry, aiming to mitigate environmental contamination. We thus carried out a review addressing this issue, highlighting wood vinegar (WV), also known as pyroligneous acid, as an alternative antimicrobial with good potential to replace conventional products. In this regard, many studies have demonstrated that WV is a promising product. WV is a nontoxic additive widely employed in the food industry to impart a smoked flavor to foods. Studies have shown that, depending on the WV concentration, good results can be achieved using it as an antimicrobial against pathogenic bacteria and fungi and a valuable growth promoter for poultry and pigs.
Collapse
Affiliation(s)
- Gil Sander Próspero Gama
- Graduate Program in Forest Sciences, Forest Engineering, Universidade Federal do Rio Grande do Norte, Rodovia RN 160, km 03 s/n, Distrito de Jundiaí, Macaíba CEP 59.280-000, Brazil; (G.S.P.G.); (A.S.P.); (T.K.B.d.A.); (G.S.d.A.)
| | - Alexandre Santos Pimenta
- Graduate Program in Forest Sciences, Forest Engineering, Universidade Federal do Rio Grande do Norte, Rodovia RN 160, km 03 s/n, Distrito de Jundiaí, Macaíba CEP 59.280-000, Brazil; (G.S.P.G.); (A.S.P.); (T.K.B.d.A.); (G.S.d.A.)
| | - Francisco Marlon Carneiro Feijó
- Graduate Program in Environment, Technology, and Society—PPGATS, Laboratory of Veterinary Microbiology and Laboratory of Wood Technology, Universidade Federal Rural do Semiárido—UFERSA, Av. Francisco Mota, 572—Bairro Costa e Silva, Mossoró CEP 59.625-900, Brazil;
| | - Tatiane Kelly Barbosa de Azevedo
- Graduate Program in Forest Sciences, Forest Engineering, Universidade Federal do Rio Grande do Norte, Rodovia RN 160, km 03 s/n, Distrito de Jundiaí, Macaíba CEP 59.280-000, Brazil; (G.S.P.G.); (A.S.P.); (T.K.B.d.A.); (G.S.d.A.)
| | - Rafael Rodolfo de Melo
- Graduate Program in Environment, Technology, and Society—PPGATS, Laboratory of Veterinary Microbiology and Laboratory of Wood Technology, Universidade Federal Rural do Semiárido—UFERSA, Av. Francisco Mota, 572—Bairro Costa e Silva, Mossoró CEP 59.625-900, Brazil;
| | - Gabriel Siqueira de Andrade
- Graduate Program in Forest Sciences, Forest Engineering, Universidade Federal do Rio Grande do Norte, Rodovia RN 160, km 03 s/n, Distrito de Jundiaí, Macaíba CEP 59.280-000, Brazil; (G.S.P.G.); (A.S.P.); (T.K.B.d.A.); (G.S.d.A.)
| |
Collapse
|