1
|
Zhu Q, Peng Y, Liu X, Chen W, Geng M, Na J, Khan MZ, Wang C. Application of Omics in Donkey Meat Research: A Review. Animals (Basel) 2025; 15:991. [PMID: 40218384 PMCID: PMC11987763 DOI: 10.3390/ani15070991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
This review comprehensively examines the molecular basis of donkey meat characteristics and growth-associated genes, integrating findings from multiple omics approaches. This study examines the nutritional profile of donkey meat, which is rich in protein, essential amino acids, and unsaturated fatty acids. Through a systematic literature search across Web of Science, Google Scholar, PubMed, and Scopus databases (2000-2024), we collected and analyzed data from 400 research articles using predefined inclusion criteria focused on nutritional composition, omics approaches, and meat quality parameters in donkey populations. The study also evaluates various factors affecting meat quality, including breed differences, age, feeding management, and storage conditions. Advanced genomic and transcriptomic analyses have revealed numerous candidate genes, such as ACTN3, BMP7, NR6A1, Wnt7a, HOXC8, LCORL, TPM2, and TPM3, associated with growth traits and meat quality characteristics, providing valuable insights for genetic improvement programs. Furthermore, the review discusses various authentication methods for ensuring donkey meat quality and preventing adulteration, highlighting the integration of traditional and modern analytical approaches.
Collapse
Affiliation(s)
- Qifei Zhu
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Yongdong Peng
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Xiaotong Liu
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Wenting Chen
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Mingyang Geng
- Ili Kazak Autonomous Prefecture Livestock General Station, Ili 835000, China
| | - Jincheng Na
- Ili Kazak Autonomous Prefecture Livestock General Station, Ili 835000, China
| | - Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
2
|
Tao ZS, Hu XF, Sun T. Melatonin prevents bone loss in osteoporotic rats with valproic acid treatment by anti-inflammatory and anti-oxidative stress. Int Immunopharmacol 2024; 141:112932. [PMID: 39154533 DOI: 10.1016/j.intimp.2024.112932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/27/2024] [Accepted: 08/11/2024] [Indexed: 08/20/2024]
Abstract
Melatonin (MEL) has shown positive effects in anti-inflammatory and anti-oxidative stress research. This study investigates whether MEL can positively impact bone loss induced by valproic acid (VPA) in rats. The study examines changes in MC3T3-E1 cell viability and osteogenic potential, along with osteoclast differentiation in RAW264.7 cells in the presence of VPA using CCK-8, ALP staining, AR staining, and TRAP staining. In vitro experiments reveal that VPA-induced inhibition of osteogenic differentiation and promotion of osteoclastic differentiation are linked to increased inflammation and oxidative stress. Furthermore, MEL has demonstrated the ability to reduce oxidative stress and inflammation, boost osteogenic differentiation, and inhibit osteoclast differentiation. Animal experiments confirm that MEL significantly increases SOD2 expression and decreases TNF-α expression, leading to the restoration of impaired bone metabolism, enhanced bone strength, and higher bone mineral density. The combined experimental results strongly suggest that MEL can enhance osteogenic activity in the presence of VPA by reducing inflammation and oxidative stress, impeding osteoclast differentiation, and alleviating bone loss in VPA-treated rat models.
Collapse
Affiliation(s)
- Zhou-Shan Tao
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu 241001, Anhui, PR China; Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, No. 2, Zhe Shan Xi Road, Wuhu 241001, Anhui, PR China
| | - Xu-Feng Hu
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu 241001, Anhui, PR China
| | - Tao Sun
- Department of Orthopedics, Lishui Central Hospital, the Fifth Affiliated Hospital of Wenzhou Medical University, No. 289, Kuocang Road, Lishui City 323000, ZheJiang, PR China.
| |
Collapse
|
3
|
Khan MZ, Chen W, Wang X, Liang H, Wei L, Huang B, Kou X, Liu X, Zhang Z, Chai W, Khan A, Peng Y, Wang C. A review of genetic resources and trends of omics applications in donkey research: focus on China. Front Vet Sci 2024; 11:1366128. [PMID: 39464628 PMCID: PMC11502298 DOI: 10.3389/fvets.2024.1366128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 09/12/2024] [Indexed: 10/29/2024] Open
Abstract
Omics methodologies, such as genomics, transcriptomics, proteomics, metabolomics, lipidomics and microbiomics, have revolutionized biological research by allowing comprehensive molecular analysis in livestock animals. However, despite being widely used in various animal species, research on donkeys has been notably scarce. China, renowned for its rich history in donkey husbandry, plays a pivotal role in their conservation and utilization. China boasts 24 distinct donkey breeds, necessitating conservation efforts, especially for smaller breeds facing extinction threats. So far, omics approaches have been employed in studies of donkey milk and meat, shedding light on their composition and quality. Similarly, omics methods have been utilized to explore the molecular basis associated with donkey growth, meat production, and quality traits. Omics analysis has also unraveled the critical role of donkey microbiota in health and nutrition, with gut microbiome studies revealing associations with factors such as pregnancy, age, transportation stress, and altitude. Furthermore, omics applications have addressed donkey health issues, including infectious diseases and reproductive problems. In addition, these applications have also provided insights into the improvement of donkey reproductive efficiency research. In conclusion, omics methodologies are essential for advancing knowledge about donkeys, their genetic diversity, and their applications across various domains. However, omics research in donkeys is still in its infancy, and there is a need for continued research to enhance donkey breeding, production, and welfare in China and beyond.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Wenting Chen
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Xinrui Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Huili Liang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Lin Wei
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Bingjian Huang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Xiyan Kou
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Xiaotong Liu
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Zhenwei Zhang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Wenqiong Chai
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yongdong Peng
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| |
Collapse
|
4
|
Ai X, Liu Y, Shi J, Xie X, Li L, Duan R, Lv Y, Xiong K, Miao Y, Zhang Y. Structural characteristics of gut microbiota in longevity from Changshou town, Hubei, China. Appl Microbiol Biotechnol 2024; 108:300. [PMID: 38619710 PMCID: PMC11018559 DOI: 10.1007/s00253-024-13140-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
The gut microbiota (GM) and its potential functions play a crucial role in maintaining host health and longevity. The aim of this study was to investigate the potential relationship between GM and longevity. We collected fecal samples from 92 healthy volunteers (middle-aged and elderly: 43-79 years old; longevity: ≥ 90 years old) from Changshou Town, Zhongxiang City, Hubei, China. In addition, we collected samples from 30 healthy middle-aged and elderly controls (aged 51-70 years) from Wuhan, Hubei. The 16S rDNA V3 + V4 region of the fecal samples was sequenced using high-throughput sequencing technology. Diversity analysis results showed that the elderly group with longevity and the elderly group with low body mass index (BMI) exhibited higher α diversity. However, no significant difference was observed in β diversity. The results of the microbiome composition indicate that Firmicutes, Proteobacteria, and Bacteroidota are the core phyla in all groups. Compared to younger elderly individuals, Akkermansia and Lactobacillus are significantly enriched in the long-lived elderly group, while Megamonas is significantly reduced. In addition, a high abundance of Akkermansia is a significant characteristic of elderly populations with low BMI values. Furthermore, the functional prediction results showed that the elderly longevity group had higher abilities in short-chain fatty acid metabolism, amino acid metabolism, and xenobiotic biodegradation. Taken together, our study provides characteristic information on GM in the long-lived elderly population in Changshou Town. This study can serve as a valuable addition to the current research on age-related GM. KEY POINTS: • The gut microbiota of elderly individuals with longevity and low BMI exhibit higher alpha diversity • Gut microbiota diversity did not differ significantly between genders in the elderly population • Several potentially beneficial bacteria (e.g., Akkermansia and Lactobacillus) are enriched in long-lived individuals.
Collapse
Affiliation(s)
- Xu Ai
- Jingmen Central Hospital, Hubei Clinical Medical Research Center for Functional Colorectal Diseases, Jingmen, 448000, Hubei, China
| | - Yu Liu
- Jingmen Central Hospital, Hubei Clinical Medical Research Center for Functional Colorectal Diseases, Jingmen, 448000, Hubei, China
| | - Jinrong Shi
- Jingmen Central Hospital, Hubei Clinical Medical Research Center for Functional Colorectal Diseases, Jingmen, 448000, Hubei, China
| | - Xiongwei Xie
- Jingmen Central Hospital, Hubei Clinical Medical Research Center for Functional Colorectal Diseases, Jingmen, 448000, Hubei, China
| | - Linzi Li
- Jingmen Central Hospital, Hubei Clinical Medical Research Center for Functional Colorectal Diseases, Jingmen, 448000, Hubei, China
| | - Rui Duan
- Jingmen Central Hospital, Hubei Clinical Medical Research Center for Functional Colorectal Diseases, Jingmen, 448000, Hubei, China
| | - Yongling Lv
- Maintainbiotech. Ltd. (Wuhan), Wuhan, 430000, Hubei, China
| | - Kai Xiong
- Maintainbiotech. Ltd. (Wuhan), Wuhan, 430000, Hubei, China
| | - Yuanxin Miao
- Research Institute of Agricultural Biotechnology, Jingchu University of Technology, Jingmen, 448000, Hubei, China.
| | - Yonglian Zhang
- Jingmen Central Hospital, Hubei Clinical Medical Research Center for Functional Colorectal Diseases, Jingmen, 448000, Hubei, China.
| |
Collapse
|