1
|
Chen Q, Wang L, Li J, Li Q, Su H, Mai Z. Characteristics of Carbonatogenic Bacteria and Their Role in Enhancing the Stability of Biocrusts in Tropical Coral Islands. Microorganisms 2025; 13:523. [PMID: 40142416 PMCID: PMC11945846 DOI: 10.3390/microorganisms13030523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Soil erosion is a serious environmental problem that leads to land degradation and ecological imbalance, thereby eliciting extensive and profound worldwide concern. Biological soil crusts (biocrusts) play a crucial role in soil stabilization; however, the underlying microbial enzymatic mechanisms remain poorly understood. The present study aimed to characterize carbonatogenic bacteria and investigate the role of their carbonic anhydrase-induced carbonate crystals in promoting soil shear strength within biocrusts. The results demonstrated a significant increase in the activity of carbonic anhydrase during biocrust formation and development (p < 0.05). A total of 35 strains exhibiting carbonic anhydrase activity were isolated from biocrusts, belonging to Actinomycetota, Bacillota, Pseudomonadota and Cyanobacteriota. The subsequent investigation revealed a positive correlation between the carbonic anhydrase activities of the strains and the shear strength during sand consolidation. Specifically, strain SCSIO19859, a type of cyanophyta, exhibited the highest carbonic anhydrase activity, of 1.50 U/mL. It produced 0.70 g/day of calcium carbonate and demonstrated a shear strength that was 6.09 times greater than that of the control group after sand consolidation for seven days of incubation under optimal conditions. X-ray diffraction and scanning electron microscope analysis revealed that SCSIO19859 produced calcite and vaterite carbonates, which significantly increased the shear strength of the sand grains (p < 0.05). This study provides evidence for the ecological function of biocrusts in promoting soil erosion resistance from the perspective of carbonatogenic bacteria-derived carbonic anhydrase. The functional strains with carbonic anhydrase obtained from this study have significant potential applications in enhancing soil erosion resistance.
Collapse
Affiliation(s)
- Qiqi Chen
- School of Resources, Environment and Materials, School of Marine Sciences, Guangxi University, Nanning 530004, China
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Lin Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Jie Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Qiqi Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Hongfei Su
- School of Resources, Environment and Materials, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Zhimao Mai
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
2
|
Pagli C, Chamizo S, Migliore G, Rugnini L, De Giudici G, Braglia R, Canini A, Cantón Y. Isolation of biocrust cyanobacteria and evaluation of Cu, Pb, and Zn immobilisation potential for soil restoration and sustainable agriculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174020. [PMID: 38897475 DOI: 10.1016/j.scitotenv.2024.174020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/30/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Soil contamination by heavy metals represents an important environmental and public health problem of global concern. Biocrust-forming cyanobacteria offer promise for heavy metal immobilisation in contaminated soils due to their unique characteristics, including their ability to grow in contaminated soils and produce exopolysaccharides (EPS). However, limited research has analysed the representativeness of cyanobacteria in metal-contaminated soils. Additionally, there is a lack of studies examining how cyanobacteria adaptation to specific environments can impact their metal-binding capacity. To address this research gap, we conducted a study analysing the bacterial communities of cyanobacteria-dominated biocrusts in a contaminated area from South Sardinia (Italy). Additionally, by using two distinct approaches, we isolated three Nostoc commune strains from cyanobacteria-dominated biocrust and we also evaluated their potential to immobilise heavy metals. The first isolation method involved acclimatizing biocrust samples in liquid medium while, in the second method, biocrust samples were directly seeded onto agar plates. The microbial community analysis revealed Cyanobacteria, Bacteroidota, Proteobacteria, and Actinobacteria as the predominant groups, with cyanobacteria representing between 13.3 % and 26.0 % of the total community. Despite belonging to the same species, these strains exhibited different growth rates (1.1-2.2 g L-1 of biomass) and capacities for EPS production (400-1786 mg L-1). The three strains demonstrated a notable ability for metal immobilisation, removing up to 88.9 % of Cu, 86.2 % of Pb, and 45.3 % of Zn from liquid medium. Cyanobacteria EPS production showed a strong correlation with the removal of Cu, indicating its role in facilitating metal immobilisation. Furthermore, differences in Pb immobilisation (40-86.2 %) suggest possible environmental adaptation mechanisms of the strains. This study highlights the promising application of N. commune strains for metal immobilisation in soils, offering a potential bioremediation tool to combat the adverse effects of soil contamination and promote environmental sustainability.
Collapse
Affiliation(s)
- Carlotta Pagli
- Department of Biology, University of Rome Tor Vergata, Italy; Department of Agronomy, University of Almería, Spain; PhD Program in Evolutionary Biology and Ecology, University of Rome Tor Vergata, Italy.
| | - Sonia Chamizo
- Department of Agronomy, University of Almería, Spain; Department of Desertification and Geo-Ecology, Experimental Station of Arid Zones (EEZA-CSIC), Almería, Spain
| | - Giada Migliore
- ENEA, Territorial and Production Systems Sustainability Department, Italy
| | - Lorenza Rugnini
- Department of Biology, University of Rome Tor Vergata, Italy
| | - Giovanni De Giudici
- Department of Chemical and Geological Sciences, University of Cagliari, Italy
| | - Roberto Braglia
- Department of Biology, University of Rome Tor Vergata, Italy
| | | | - Yolanda Cantón
- Department of Agronomy, University of Almería, Spain; Center for Research on Scientific Collections of the University of Almeria (CECOUAL), Spain
| |
Collapse
|
3
|
Mai Z, Chen Q, Wang L, Zhang J, Cheng H, Su H, Zhang S, Li J. Bacterial carbonic anhydrase-induced carbonates mitigate soil erosion in biological soil crusts. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120085. [PMID: 38219667 DOI: 10.1016/j.jenvman.2024.120085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
Soil erosion is a significant environmental issue worldwide, particularly in island regions where land resources are exceedingly scarce. Biological soil crusts play a crucial role in mitigating soil erosion, yet the precise effect and mechanism of biological soil crusts against erosion remain ambiguous. In this study, biological soil crusts at various developmental stages from a tropical coral island in the South China Sea were chosen to investigate the role of carbonic anhydrase in mitigating erosion. A cohesive strength meter, real-time quantitative PCR, and 16S rRNA gene high-throughput sequencing were employed to assess variations in soil antiscouribility as well as bacterial abundance and composition during the formation and development of biological soil crusts. Scanning electron microscopy was utilized to detect carbonates induced by bacterial carbonic anhydrase and elucidate their role in the solidification of sand particles. The findings indicate that the formation and development of biological soil crusts significantly enhance anti-scouribility. Comparison to those of bare coral sand, the shear stress increased from 0.35 to 1.11 N/m2 in the dark biocrusts. Moreover, significantly elevated carbonic anhydrase activity was observed in biological soil crusts, demonstrating a positive correlation with antiscouribility. In addition, there was a significant increase in bacterial abundance within the biological soil crusts. The enrichment of Cyanobacteriales and Chloroflexales potentially contributed to the increased carbonic anhydrase activity and antiscouribility. Furthermore, three cyanobacterial strains with carbonic anhydrase activity were isolated from biological soil crusts and subsequently confirmed to enhance sand solidification through microbial carbonate precipitation. This study presents initial evidence for the role of microbial carbonic anhydrase in enhancing the antiscouribility of biological soil crusts during their formation and development. These findings offer novel insights into the functional and mechanistic dimensions underlying the mitigation of soil erosion facilitated by biological soil crusts, which are valuable for implementing sustainable biorestoration and environmental management technologies to prevent soil erosion.
Collapse
Affiliation(s)
- Zhimao Mai
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Qiqi Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Lin Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jian Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Hao Cheng
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Hongfei Su
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, Guangdong, China.
| | - Jie Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|