1
|
Baker MJ, Blau KU, Anderson AJ, Palmer CS, Fielden LF, Crameri JJ, Milenkovic D, Thorburn DR, Frazier AE, Langer T, Stojanovski D. CLPB disaggregase dysfunction impacts the functional integrity of the proteolytic SPY complex. J Cell Biol 2024; 223:e202305087. [PMID: 38270563 PMCID: PMC10818064 DOI: 10.1083/jcb.202305087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/07/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024] Open
Abstract
CLPB is a mitochondrial intermembrane space AAA+ domain-containing disaggregase. CLPB mutations are associated with 3-methylglutaconic aciduria and neutropenia; however, the molecular mechanism underscoring disease and the contribution of CLPB substrates to disease pathology remains unknown. Interactions between CLPB and mitochondrial quality control (QC) factors, including PARL and OPA1, have been reported, hinting at dysregulation of organelle QC in disease. Utilizing proteomic and biochemical approaches, we show a stress-specific aggregation phenotype in a CLPB-null environment and define the CLPB substrate profile. We illustrate an interplay between intermembrane space proteins including CLPB, HAX1, HTRA2, and the inner membrane quality control proteins (STOML2, PARL, YME1L1; SPY complex), with CLPB deficiency impeding SPY complex function by virtue of protein aggregation in the intermembrane space. We conclude that there is an interdependency of mitochondrial QC components at the intermembrane space/inner membrane interface, and perturbations to this network may underscore CLPB disease pathology.
Collapse
Affiliation(s)
- Megan J. Baker
- Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Kai Uwe Blau
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Alexander J. Anderson
- Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Catherine S. Palmer
- Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Laura F. Fielden
- Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Jordan J. Crameri
- Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Dusanka Milenkovic
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - David R. Thorburn
- Royal Children’s Hospital and Department of Paediatrics, Murdoch Children’s Research Institute, The University of Melbourne, Parkville, Australia
- Victorian Clinical Genetics Services, Royal Children’s Hospital, Parkville, Australia
| | - Ann E. Frazier
- Royal Children’s Hospital and Department of Paediatrics, Murdoch Children’s Research Institute, The University of Melbourne, Parkville, Australia
| | - Thomas Langer
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Diana Stojanovski
- Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| |
Collapse
|
3
|
Gupta AK, Das S, Kamran M, Ejazi SA, Ali N. The Pathogenicity and Virulence of Leishmania - interplay of virulence factors with host defenses. Virulence 2022; 13:903-935. [PMID: 35531875 PMCID: PMC9154802 DOI: 10.1080/21505594.2022.2074130] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Leishmaniasis is a group of disease caused by the intracellular protozoan parasite of the genus Leishmania. Infection by different species of Leishmania results in various host immune responses, which usually lead to parasite clearance and may also contribute to pathogenesis and, hence, increasing the complexity of the disease. Interestingly, the parasite tends to reside within the unfriendly environment of the macrophages and has evolved various survival strategies to evade or modulate host immune defense. This can be attributed to the array of virulence factors of the vicious parasite, which target important host functioning and machineries. This review encompasses a holistic overview of leishmanial virulence factors, their role in assisting parasite-mediated evasion of host defense weaponries, and modulating epigenetic landscapes of host immune regulatory genes. Furthermore, the review also discusses the diagnostic potential of various leishmanial virulence factors and the advent of immunomodulators as futuristic antileishmanial drug therapy.
Collapse
Affiliation(s)
- Anand Kumar Gupta
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Sonali Das
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Mohd Kamran
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Sarfaraz Ahmad Ejazi
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| |
Collapse
|
5
|
Mitochondrial HSP70 Chaperone System-The Influence of Post-Translational Modifications and Involvement in Human Diseases. Int J Mol Sci 2021; 22:ijms22158077. [PMID: 34360841 PMCID: PMC8347752 DOI: 10.3390/ijms22158077] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 01/25/2023] Open
Abstract
Since their discovery, heat shock proteins (HSPs) have been identified in all domains of life, which demonstrates their importance and conserved functional role in maintaining protein homeostasis. Mitochondria possess several members of the major HSP sub-families that perform essential tasks for keeping the organelle in a fully functional and healthy state. In humans, the mitochondrial HSP70 chaperone system comprises a central molecular chaperone, mtHSP70 or mortalin (HSPA9), which is actively involved in stabilizing and importing nuclear gene products and in refolding mitochondrial precursor proteins, and three co-chaperones (HSP70-escort protein 1-HEP1, tumorous imaginal disc protein 1-TID-1, and Gro-P like protein E-GRPE), which regulate and accelerate its protein folding functions. In this review, we summarize the roles of mitochondrial molecular chaperones with particular focus on the human mtHsp70 and its co-chaperones, whose deregulated expression, mutations, and post-translational modifications are often considered to be the main cause of neurological disorders, genetic diseases, and malignant growth.
Collapse
|
6
|
Vazquez-Calvo C, Suhm T, Büttner S, Ott M. The basic machineries for mitochondrial protein quality control. Mitochondrion 2019; 50:121-131. [PMID: 31669238 DOI: 10.1016/j.mito.2019.10.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/10/2019] [Accepted: 10/02/2019] [Indexed: 11/16/2022]
Abstract
Mitochondria play pivotal roles in cellular energy metabolism, the synthesis of essential biomolecules and the regulation of cell death and aging. The proper folding, unfolding and degradation of the many proteins active within mitochondria is surveyed by the mitochondrial quality control machineries. Here, we describe the principal components of the mitochondrial quality control system and recent developments in the elucidation of the molecular mechanisms maintaining a functional mitochondrial proteome.
Collapse
Affiliation(s)
- Carmela Vazquez-Calvo
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrheniusväg 16, Stockholm 106 91, Sweden; Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, Stockholm 106 91, Sweden
| | - Tamara Suhm
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrheniusväg 16, Stockholm 106 91, Sweden
| | - Sabrina Büttner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, Stockholm 106 91, Sweden; Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, Graz 8010, Austria.
| | - Martin Ott
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrheniusväg 16, Stockholm 106 91, Sweden.
| |
Collapse
|
7
|
Chen X, Glytsou C, Zhou H, Narang S, Reyna DE, Lopez A, Sakellaropoulos T, Gong Y, Kloetgen A, Yap YS, Wang E, Gavathiotis E, Tsirigos A, Tibes R, Aifantis I. Targeting Mitochondrial Structure Sensitizes Acute Myeloid Leukemia to Venetoclax Treatment. Cancer Discov 2019; 9:890-909. [PMID: 31048321 DOI: 10.1158/2159-8290.cd-19-0117] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/15/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
Abstract
The BCL2 family plays important roles in acute myeloid leukemia (AML). Venetoclax, a selective BCL2 inhibitor, has received FDA approval for the treatment of AML. However, drug resistance ensues after prolonged treatment, highlighting the need for a greater understanding of the underlying mechanisms. Using a genome-wide CRISPR/Cas9 screen in human AML, we identified genes whose inactivation sensitizes AML blasts to venetoclax. Genes involved in mitochondrial organization and function were significantly depleted throughout our screen, including the mitochondrial chaperonin CLPB. We demonstrated that CLPB is upregulated in human AML, it is further induced upon acquisition of venetoclax resistance, and its ablation sensitizes AML to venetoclax. Mechanistically, CLPB maintains the mitochondrial cristae structure via its interaction with the cristae-shaping protein OPA1, whereas its loss promotes apoptosis by inducing cristae remodeling and mitochondrial stress responses. Overall, our data suggest that targeting mitochondrial architecture may provide a promising approach to circumvent venetoclax resistance. SIGNIFICANCE: A genome-wide CRISPR/Cas9 screen reveals genes involved in mitochondrial biological processes participate in the acquisition of venetoclax resistance. Loss of the mitochondrial protein CLPB leads to structural and functional defects of mitochondria, hence sensitizing AML cells to apoptosis. Targeting CLPB synergizes with venetoclax and the venetoclax/azacitidine combination in AML in a p53-independent manner.See related commentary by Savona and Rathmell, p. 831.This article is highlighted in the In This Issue feature, p. 813.
Collapse
Affiliation(s)
- Xufeng Chen
- Department of Pathology, NYU Langone Health and NYU School of Medicine, New York, New York.,Laura and Isaac Perlmutter Cancer Center, NYU Langone Health and NYU School of Medicine, New York, New York
| | - Christina Glytsou
- Department of Pathology, NYU Langone Health and NYU School of Medicine, New York, New York.,Laura and Isaac Perlmutter Cancer Center, NYU Langone Health and NYU School of Medicine, New York, New York
| | - Hua Zhou
- Applied Bioinformatics Laboratories, NYU School of Medicine, New York, New York
| | - Sonali Narang
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health and NYU School of Medicine, New York, New York
| | - Denis E Reyna
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York.,Department of Medicine, Albert Einstein College of Medicine, Bronx, New York.,Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York
| | - Andrea Lopez
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York.,Department of Medicine, Albert Einstein College of Medicine, Bronx, New York.,Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York
| | - Theodore Sakellaropoulos
- Department of Pathology, NYU Langone Health and NYU School of Medicine, New York, New York.,Laura and Isaac Perlmutter Cancer Center, NYU Langone Health and NYU School of Medicine, New York, New York
| | - Yixiao Gong
- Department of Pathology, NYU Langone Health and NYU School of Medicine, New York, New York.,Laura and Isaac Perlmutter Cancer Center, NYU Langone Health and NYU School of Medicine, New York, New York.,Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andreas Kloetgen
- Department of Pathology, NYU Langone Health and NYU School of Medicine, New York, New York.,Laura and Isaac Perlmutter Cancer Center, NYU Langone Health and NYU School of Medicine, New York, New York
| | - Yoon Sing Yap
- Department of Pathology, NYU Langone Health and NYU School of Medicine, New York, New York.,Laura and Isaac Perlmutter Cancer Center, NYU Langone Health and NYU School of Medicine, New York, New York
| | - Eric Wang
- Department of Pathology, NYU Langone Health and NYU School of Medicine, New York, New York.,Laura and Isaac Perlmutter Cancer Center, NYU Langone Health and NYU School of Medicine, New York, New York
| | - Evripidis Gavathiotis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York.,Department of Medicine, Albert Einstein College of Medicine, Bronx, New York.,Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York
| | - Aristotelis Tsirigos
- Department of Pathology, NYU Langone Health and NYU School of Medicine, New York, New York.,Laura and Isaac Perlmutter Cancer Center, NYU Langone Health and NYU School of Medicine, New York, New York.,Applied Bioinformatics Laboratories, NYU School of Medicine, New York, New York
| | - Raoul Tibes
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health and NYU School of Medicine, New York, New York.
| | - Iannis Aifantis
- Department of Pathology, NYU Langone Health and NYU School of Medicine, New York, New York. .,Laura and Isaac Perlmutter Cancer Center, NYU Langone Health and NYU School of Medicine, New York, New York
| |
Collapse
|