1
|
Liu W, Zhang L, Liao W, Liu H, Liang W, Yan J, Huang Y, Jiang T, Wang Q, Zhang C. Unveiling the molecular and cellular links between obstructive sleep apnea-hypopnea syndrome and vascular aging. Chin Med J (Engl) 2025; 138:155-171. [PMID: 39647991 PMCID: PMC11745861 DOI: 10.1097/cm9.0000000000003352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Indexed: 12/10/2024] Open
Abstract
ABSTRACT Vascular aging (VA) is a common etiology of various chronic diseases and represents a major public health concern. Intermittent hypoxia (IH) associated with obstructive sleep apnea-hypopnea syndrome (OSAHS) is a primary pathological and physiological driver of OSAHS-induced systemic complications. A substantial proportion of OSAHS patients, estimated to be between 40% and 80%, have comorbidities such as hypertension, heart failure, coronary artery disease, pulmonary hypertension, atrial fibrillation, aneurysm, and stroke, all of which are closely associated with VA. This review examines the molecular and cellular features common to both OSAHS and VA, highlighting decreased melatonin secretion, impaired autophagy, increased apoptosis, increased inflammation and pyroptosis, increased oxidative stress, accelerated telomere shortening, accelerated stem cell depletion, metabolic disorders, imbalanced protein homeostasis, epigenetic alterations, and dysregulated neurohormonal signaling. The accumulation and combination of these features may underlie the pathophysiological link between OSAHS and VA, but the exact mechanisms by which OSAHS affects VA may require further investigation. Taken together, these findings suggest that OSAHS may serve as a novel risk factor for VA and related vascular disorders, and that targeting these features may offer therapeutic potential to mitigate the vascular risks associated with OSAHS.
Collapse
Affiliation(s)
- Wei Liu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| | - Le Zhang
- Institute of Gerontology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| | - Wenhui Liao
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| | - Wukaiyang Liang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| | - Jinhua Yan
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| | - Yi Huang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| | - Tao Jiang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| | - Qian Wang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| |
Collapse
|
2
|
Kang J, Kim H, Lee Y, Lee H, Park Y, Jang H, Kim J, Lee M, Jeong B, Byun J, Kim SJ, Lim E, Jung J, Woo E, Kang T, Park K. Unveiling Cas12j Trans-Cleavage Activity for CRISPR Diagnostics: Application to miRNA Detection in Lung Cancer Diagnosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402580. [PMID: 39354694 PMCID: PMC11600238 DOI: 10.1002/advs.202402580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/25/2024] [Indexed: 10/03/2024]
Abstract
Cas12j, a hypercompact and efficient Cas protein, has potential for use in CRISPR diagnostics, but has not yet been used because the trans-cleavage activity of Cas12j is veiled. Here, the trans-cleavage behavior of Cas12j1, 2, and 3 variants and evaluate their suitability for nucleic acid detection is unveiled. The target preferences and mismatch specificities of the Cas12j variants are precisely investigated and the optimal Cas12j reaction conditions are determined. As a result, the EXP-J assay for miRNA detection by harnessing the robust trans-cleavage activity of Cas12j on short ssDNA is developed. The EXP-J method demonstrates exceptional detection capabilities for miRNAs, proving that Cas12j can be a pivotal component in molecular diagnostics. Furthermore, the translational potential of the EXP-J assay is validated by detecting oncogenic miRNAs in plasma samples from lung cancer patients. This investigation not only elucidates the trans-cleavage characteristics of Cas12j variants, but also advances the Cas12j-based diagnostic toolkit.
Collapse
Affiliation(s)
- Ju‐Eun Kang
- Critical Diseases Diagnostics Convergence Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Daejeon34141Republic of Korea
- Department of Proteome Structural BiologyKRIBB School of BioscienceUniversity of Science and Technology (UST)Daejeon34113Republic of Korea
| | - Hansol Kim
- Bionanotechnology Research CenterKRIBBDaejeon34141Republic of Korea
| | - Young‐Hoon Lee
- Critical Diseases Diagnostics Convergence Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Daejeon34141Republic of Korea
- Department of Proteome Structural BiologyKRIBB School of BioscienceUniversity of Science and Technology (UST)Daejeon34113Republic of Korea
| | - Ha‐Yeong Lee
- Critical Diseases Diagnostics Convergence Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Daejeon34141Republic of Korea
| | - Yeonkyung Park
- Bionanotechnology Research CenterKRIBBDaejeon34141Republic of Korea
| | - Hyowon Jang
- Bionanotechnology Research CenterKRIBBDaejeon34141Republic of Korea
| | - Jae‐Rin Kim
- Critical Diseases Diagnostics Convergence Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Daejeon34141Republic of Korea
- Department of Proteome Structural BiologyKRIBB School of BioscienceUniversity of Science and Technology (UST)Daejeon34113Republic of Korea
| | - Min‐Young Lee
- Department of Nano‐Bio Convergence, Surface Materials DivisionKorea Institute of Materials Science (KIMS)ChangwonGyeongsangnam‐do51508Republic of Korea
| | - Byeong‐Ho Jeong
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineSamsung Medical CenterSungkyunkwan University (SKKU) School of MedicineSeoul06351Republic of Korea
| | - Ju‐Young Byun
- Critical Diseases Diagnostics Convergence Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Daejeon34141Republic of Korea
- Bionanotechnology Research CenterKRIBBDaejeon34141Republic of Korea
| | - Seung Jun Kim
- Critical Diseases Diagnostics Convergence Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Daejeon34141Republic of Korea
| | - Eun‐Kyung Lim
- Bionanotechnology Research CenterKRIBBDaejeon34141Republic of Korea
- School of PharmacySKKUSuwonGyeongi‐do16419Republic of Korea
- Department of NanobiotechnologyKRIBB School of Biotechnology, USTDaejeon34113Republic of Korea
| | - Juyeon Jung
- Bionanotechnology Research CenterKRIBBDaejeon34141Republic of Korea
- School of PharmacySKKUSuwonGyeongi‐do16419Republic of Korea
- Department of NanobiotechnologyKRIBB School of Biotechnology, USTDaejeon34113Republic of Korea
| | - Eui‐Jeon Woo
- Critical Diseases Diagnostics Convergence Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Daejeon34141Republic of Korea
- Department of Proteome Structural BiologyKRIBB School of BioscienceUniversity of Science and Technology (UST)Daejeon34113Republic of Korea
- Disease Target Structure Research CenterKRIBBDaejeon34141Republic of Korea
| | - Taejoon Kang
- Bionanotechnology Research CenterKRIBBDaejeon34141Republic of Korea
- School of PharmacySKKUSuwonGyeongi‐do16419Republic of Korea
| | - Kwang‐Hyun Park
- Critical Diseases Diagnostics Convergence Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Daejeon34141Republic of Korea
- Department of Proteome Structural BiologyKRIBB School of BioscienceUniversity of Science and Technology (UST)Daejeon34113Republic of Korea
- Disease Target Structure Research CenterKRIBBDaejeon34141Republic of Korea
| |
Collapse
|
3
|
Moeinafshar A, Nouri M, Shokrollahi N, Masrour M, Behnam A, Tehrani Fateh S, Sadeghi H, Miryounesi M, Ghasemi MR. Non-coding RNAs as potential therapeutic targets for receptor tyrosine kinase signaling in solid tumors: current status and future directions. Cancer Cell Int 2024; 24:26. [PMID: 38200584 PMCID: PMC10782702 DOI: 10.1186/s12935-023-03203-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
This review article presents an in-depth analysis of the current state of research on receptor tyrosine kinase regulatory non-coding RNAs (RTK-RNAs) in solid tumors. RTK-RNAs belong to a class of non-coding RNAs (nc-RNAs) responsible for regulating the expression and activity of receptor tyrosine kinases (RTKs), which play a critical role in cancer development and progression. The article explores the molecular mechanisms through which RTK-RNAs modulate RTK signaling pathways and highlights recent advancements in the field. This include the identification of potential new RTK-RNAs and development of therapeutic strategies targeting RTK-RNAs. While the review discusses promising results from a variety of studies, encompassing in vitro, in vivo, and clinical investigations, it is important to acknowledge the challenges and limitations associated with targeting RTK-RNAs for therapeutic applications. Further studies involving various cancer cell lines, animal models, and ultimately, patients are necessary to validate the efficacy of targeting RTK-RNAs. The specificity of ncRNAs in targeting cellular pathways grants them tremendous potential, but careful consideration is required to minimize off-target effects, the article additionally discusses the potential clinical applications of RTK-RNAs as biomarkers for cancer diagnosis, prognosis, and treatment. In essence, by providing a comprehensive overview of the current understanding of RTK-RNAs in solid tumors, this review emphasizes their potential as therapeutic targets for cancer while acknowledging the associated challenges and limitations.
Collapse
Affiliation(s)
- Aysan Moeinafshar
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Nouri
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nima Shokrollahi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Masrour
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Center for Orthopedic Trans-Disciplinary Applied Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirmohammad Behnam
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahand Tehrani Fateh
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Sadeghi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Miryounesi
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Ghasemi
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Fernández-Regueras M, Carbonell C, Salete-Granado D, García JL, Gragera M, Pérez-Nieto MÁ, Morán-Plata FJ, Mayado A, Torres JL, Corchete LA, Usategui-Martín R, Bueno-Martínez E, Rojas-Pirela M, Sabio G, González-Sarmiento R, Orfao A, Laso FJ, Almeida J, Marcos M. Predominantly Pro-Inflammatory Phenotype with Mixed M1/M2 Polarization of Peripheral Blood Classical Monocytes and Monocyte-Derived Macrophages among Patients with Excessive Ethanol Intake. Antioxidants (Basel) 2023; 12:1708. [PMID: 37760011 PMCID: PMC10525853 DOI: 10.3390/antiox12091708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Excessive alcohol consumption impairs the immune system, induces oxidative stress, and triggers the activation of peripheral blood (PB) monocytes, thereby contributing to alcoholic liver disease (ALD). We analyzed the M1/M2 phenotypes of circulating classical monocytes and macrophage-derived monocytes (MDMs) in excessive alcohol drinkers (EADs). PB samples from 20 EADs and 22 healthy controls were collected for isolation of CD14+ monocytes and short-term culture with LPS/IFNγ, IL4/IL13, or without stimulation. These conditions were also used to polarize MDMs into M1, M2, or M0 phenotypes. Cytokine production was assessed in the blood and culture supernatants. M1/M2-related markers were analyzed using mRNA expression and surface marker detection. Additionally, the miRNA profile of CD14+ monocytes was analyzed. PB samples from EADs exhibited increased levels of pro-inflammatory cytokines. Following short-term culture, unstimulated blood samples from EADs showed higher levels of soluble TNF-α and IL-8, whereas monocytes expressed increased levels of surface TNF-α and elevated mRNA expression of pro-inflammatory cytokines and inducible nitric oxide synthase. MDMs from EADs showed higher levels of TNF-α and CD206 surface markers and increased IL-10 production. LPS/IFNγ induced higher mRNA expression of Nrf2 only in the controls. miRNA analysis revealed a distinctive miRNA profile that is potentially associated with liver carcinogenesis and ALD through inflammation and oxidative stress. This study confirms the predominantly pro-inflammatory profile of PB monocytes among EADs and suggests immune exhaustion features in MDMs.
Collapse
Affiliation(s)
- María Fernández-Regueras
- Hospital Universitario de Burgos, 09006 Burgos, Spain
- Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Cristina Carbonell
- Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Daniel Salete-Granado
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Juan-Luis García
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
- Translational and Clinical Research Program, Centro de Investigación del Cáncer e Instituto de Biología Molecular y Celular del Cáncer (IBMCC), 37007 Salamanca, Spain
| | - Marcos Gragera
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - María-Ángeles Pérez-Nieto
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Fundación Instituto de Estudios de Ciencias de la Salud de Castilla y León, 42002 Soria, Spain
| | - Francisco-Javier Morán-Plata
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
- Translational and Clinical Research Program, Centro de Investigación del Cáncer e Instituto de Biología Molecular y Celular del Cáncer (IBMCC), 37007 Salamanca, Spain
| | - Andrea Mayado
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
- Translational and Clinical Research Program, Centro de Investigación del Cáncer e Instituto de Biología Molecular y Celular del Cáncer (IBMCC), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jorge-Luis Torres
- Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Complejo Asistencial de Zamora, 49022 Zamora, Spain
| | - Luis-Antonio Corchete
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Translational and Clinical Research Program, Centro de Investigación del Cáncer e Instituto de Biología Molecular y Celular del Cáncer (IBMCC), 37007 Salamanca, Spain
| | - Ricardo Usategui-Martín
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Biología Celular, Facultad de Medicina, Universidad de Valladolid, 47005 Valladolid, Spain
| | - Elena Bueno-Martínez
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Maura Rojas-Pirela
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - Rogelio González-Sarmiento
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Alberto Orfao
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
- Translational and Clinical Research Program, Centro de Investigación del Cáncer e Instituto de Biología Molecular y Celular del Cáncer (IBMCC), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisco-Javier Laso
- Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Julia Almeida
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
- Translational and Clinical Research Program, Centro de Investigación del Cáncer e Instituto de Biología Molecular y Celular del Cáncer (IBMCC), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Miguel Marcos
- Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
5
|
Mohanan EM, Jhala D, More CB, Patel AK, Joshi C. Bioinformatics analysis of miRNA and its associated genes to identify potential biomarkers of oral submucous fibrosis and oral malignancy. Cancer Rep (Hoboken) 2023; 6:e1787. [PMID: 36708238 PMCID: PMC10075298 DOI: 10.1002/cnr2.1787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/14/2022] [Accepted: 01/06/2023] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND MicroRNAs are a group of non-coding RNA that controls the gene expression. The interaction between miRNA and mRNA is thought to be dynamic. Oral cancer "The cancer of mouth" is quite prevailing in developing countries. miRNA has been found associated with oral cancer targeting tumor growth, cell proliferation, metastasis, invasion. The significant association of miRNA with genes could be used as a remarkable tool for diagnosis as well as prognostic analysis of oral cancer. AIM The aim of the present study is to evaluate common upregulated and downregulated miRNAs in oral submucous fibrosis (OSMF) and oral malignancy (OM) patients that can be used as diagnostic biomarkers, and to find out their interactions with target genes to establish associated networks in cancer pathways. METHODS AND RESULTS Using miRDeep2 and DESeq analysis, the upregulated and downregulated miRNA in OSMF (Oral Submucous Fibrosis) and OM (Oral Malignancies) samples were compared to GEO (Gene Expression Omnibus) control dataset. There were 50 common downregulated miRNAs and 13 common upregulated miRNAs in OSMF and OM samples. miRNet analysis of common upregulated miRNA and common downregulated miRNA identified 1295 and 5954 genes, respectively connected with cancer pathways. From analysis of Hub genes, HRAS, STAT3, TP53, MYC, PTEN, CTNNB1, CCND1, JUN, VEGFA, KRAS were found associated with downregulated miRNA and VEGFA, TP53, MDM2, PTEN, MYC, ERBB2, CDKN1A, HSP90AA1, CCND1, AKTI were found associated with upregulated miRNA. The gene enrichment analysis of these hub genes were associated with cell communication, metabolic process, cell proliferation, and cellular component organization. Hub Genes linked with upregulated miRNA had an enrichment ratio of 11.828, whereas hub genes linked with downregulated miRNA had an enrichment ratio of 45.912. CONCLUSION We identified common deregulated miRNAs between OSMF and OM patients, which were further analyzed to find out associations with the genes correlated to cancer pathways. The hub genes identified in this study were found to have a significant impact on tumor growth and carcinogenesis. Also, the enrichment of these genes has revealed that the genes are associated with cellular communication, metabolic processes and various biological regulation. These deregulated miRNAs can be used to make a panel of biomarkers to diagnose oral cancer from blood even before its onset.
Collapse
Affiliation(s)
- Ezhuthachan Mithu Mohanan
- Gujarat Biotechnology Research Centre, Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat, India
| | - Dhwani Jhala
- Gujarat Biotechnology Research Centre, Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat, India
| | - Chandramani B More
- Department of Oral Medicine & Radiology, K.M. Shah Dental College and Hospital, Vadodara, Gujarat, India
| | - Amrutlal K Patel
- Gujarat Biotechnology Research Centre, Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat, India
| | - Chaitanya Joshi
- Gujarat Biotechnology Research Centre, Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat, India
| |
Collapse
|
6
|
Huang YF, Liu MW, Xia HB, He R. Expression of miR-92a is associated with the prognosis in non-small cell lung cancer: An observation study. Medicine (Baltimore) 2022; 101:e30970. [PMID: 36254053 PMCID: PMC9575788 DOI: 10.1097/md.0000000000030970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
With the development of molecular biology technology, the discovery of microRNAs (miRNAs) has provided new ideas for the diagnosis, treatment, and prognosis of lung cancer and laid a foundation for the study of this malignancy. To assess the potential prognostic value of miR-92a as a new biomarker in non-small cell lung cancer (NSCLC) via clinical evaluation, a total of 100 patients with NSCLC admitted to the Respiratory and Intensive Care Department of Suining Central Hospital in Sichuan Province between August 2007 and April 2020 were retrospectively analyzed. The correlation between miR-92a expression and prognosis of patients with NSCLC was also evaluated in the present study. The expression level of miR-92a was measured by PT-PCR and in situ hybridization. Chi-square test was adopted to explore the relationship of miR-92a expression and clinical features. Kaplan-Meier survival curves were plotted to delineate the overall survival rate of patients with NSCLC. Cox regression analysis was performed to evaluate the prognostic significance of miR-92a expression in NSCLC. The miR-92a expression in NSCLC tissue samples was significantly higher than that in normal lung tissues (P < .001) and significantly correlated with the Eastern Cooperative Oncology Group score, histological type, and distant metastasis (P < .05). Survival curve revealed that patients with NSCLC and high miR-92a expression had relatively higher mortality than those with low PAK4 expression (P = .001). Cox regression analysis explained that miR-92a expression was associated with the prognosis of patients with NSCLC (HR = 1.8, 95% CI: 1.0-3.2, P = .036). In summary, miR-92a was highly expressed in NSCLC tissues and could act as a prognostic factor for patients with NSCLC. These results illustrate that miR-92a expression plays an important role in the invasion and metastasis of NSCLC, and miR-92a can be used as a new biomarker to determine the prognosis of this cancer.
Collapse
Affiliation(s)
- Yu-Fang Huang
- Department of Respiratory and Critical Care, Suining Central Hospital, Suining, China
- *Correspondence: Yu-Fang Huang, Department of Respiratory and Critical Care, Suining Central Hospital, No. 127 Desheng West Road, Chuanshan District, Suining 69000, China (e-mail: )
| | - Ming-Wei Liu
- Department of Emergency, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Han-Biao Xia
- Department of Respiratory and Critical Care, Suining Central Hospital, Suining, China
| | - Rong He
- Department of Respiratory and Critical Care, Suining Central Hospital, Suining, China
| |
Collapse
|
7
|
Cellular microRNAs correlate with clinical parameters in multiple injury patients. J Trauma Acute Care Surg 2022; 93:427-438. [PMID: 35797620 PMCID: PMC9488942 DOI: 10.1097/ta.0000000000003708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The pathophysiology of the inflammatory response after major trauma is complex, and the magnitude correlates with severity of tissue injury and outcomes. Study of infection-mediated immune pathways has demonstrated that cellular microRNAs may modulate the inflammatory response. The authors hypothesize that the expression of microRNAs would correlate to complicated recoveries in polytrauma patients (PtPs). METHODS Polytrauma patients enrolled in the prospective observational Tissue and Data Acquisition Protocol with Injury Severity Score of >15 were selected for this study. Polytrauma patients were divided into complicated recoveries and uncomplicated recovery groups. Polytrauma patients' blood samples were obtained at the time of admission (T0). Established biomarkers of systemic inflammation, including cytokines and chemokines, were measured using multiplexed Luminex-based methods, and novel microRNAs were measured in plasma samples using multiplex RNA hybridization. RESULTS Polytrauma patients (n = 180) had high Injury Severity Score (26 [20-34]) and complicated recovery rate of 33%. MicroRNAs were lower in PtPs at T0 compared with healthy controls, and bivariate analysis demonstrated that variations of microRNAs correlated with age, race, comorbidities, venous thromboembolism, pulmonary complications, complicated recovery, and mortality. Positive correlations were noted between microRNAs and interleukin 10, vascular endothelial growth factor, Acute Physiology and Chronic Health Evaluation, and Sequential Organ Failure Assessment scores. Multivariable Lasso regression analysis of predictors of complicated recovery based on microRNAs, cytokines, and chemokines revealed that miR-21-3p and monocyte chemoattractant protein-1 were predictive of complicated recovery with an area under the curve of 0.78. CONCLUSION Systemic microRNAs were associated with poor outcomes in PtPs, and results are consistent with previously described trends in critically ill patients. These early biomarkers of inflammation might provide predictive utility in early complicated recovery diagnosis and prognosis. Because of their potential to regulate immune responses, microRNAs may provide therapeutic targets for immunomodulation. LEVEL OF EVIDENCE Diagnostic Tests/Criteria; Level II.
Collapse
|
8
|
Liu Y, Munsayac A, Hall I, Keane SC. Solution Structure of NPSL2, A Regulatory Element in the oncomiR-1 RNA. J Mol Biol 2022; 434:167688. [PMID: 35717998 PMCID: PMC9474619 DOI: 10.1016/j.jmb.2022.167688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 12/22/2022]
Abstract
The miR-17 ∼ 92a polycistron, also known as oncomiR-1, is commonly overexpressed in multiple cancers and has several oncogenic properties. OncomiR-1 encodes six constituent microRNAs (miRs), each enzymatically processed with different efficiencies. However, the structural mechanism that regulates this differential processing remains unclear. Chemical probing of oncomiR-1 revealed that the Drosha cleavage sites of pri-miR-92a are sequestered in a four-way junction. NPSL2, an independent stem loop element, is positioned just upstream of pri-miR-92a and sequesters a crucial part of the sequence that constitutes the basal helix of pri-miR-92a. Disruption of the NPSL2 hairpin structure could promote the formation of a pri-miR-92a structure that is primed for processing by Drosha. Thus, NPSL2 is predicted to function as a structural switch, regulating pri-miR-92a processing. Here, we determined the solution structure of NPSL2 using solution NMR spectroscopy. This is the first high-resolution structure of an oncomiR-1 element. NPSL2 adopts a hairpin structure with a large, but highly structured, apical and internal loops. The 10-bp apical loop contains a pH-sensitive A+·C mismatch. Additionally, several adenosines within the apical and internal loops have elevated pKa values. The protonation of these adenosines can stabilize the NPSL2 structure through electrostatic interactions. Our study provides fundamental insights into the secondary and tertiary structure of an important RNA hairpin proposed to regulate miR biogenesis.
Collapse
Affiliation(s)
- Yaping Liu
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA. https://twitter.com/YapingLiu5
| | - Aldrex Munsayac
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA
| | - Ian Hall
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA. https://twitter.com/ihallu14
| | - Sarah C Keane
- Biophysics Program, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA; Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA.
| |
Collapse
|
9
|
Ogunleye AZ, Piyawajanusorn C, Gonçalves A, Ghislat G, Ballester PJ. Interpretable Machine Learning Models to Predict the Resistance of Breast Cancer Patients to Doxorubicin from Their microRNA Profiles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201501. [PMID: 35785523 PMCID: PMC9403644 DOI: 10.1002/advs.202201501] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/02/2022] [Indexed: 05/05/2023]
Abstract
Doxorubicin is a common treatment for breast cancer. However, not all patients respond to this drug, which sometimes causes life-threatening side effects. Accurately anticipating doxorubicin-resistant patients would therefore permit to spare them this risk while considering alternative treatments without delay. Stratifying patients based on molecular markers in their pretreatment tumors is a promising approach to advance toward this ambitious goal, but single-gene gene markers such as HER2 expression have not shown to be sufficiently predictive. The recent availability of matched doxorubicin-response and diverse molecular profiles across breast cancer patients permits now analysis at a much larger scale. 16 machine learning algorithms and 8 molecular profiles are systematically evaluated on the same cohort of patients. Only 2 of the 128 resulting models are substantially predictive, showing that they can be easily missed by a standard-scale analysis. The best model is classification and regression tree (CART) nonlinearly combining 4 selected miRNA isoforms to predict doxorubicin response (median Matthew correlation coefficient (MCC) and area under the curve (AUC) of 0.56 and 0.80, respectively). By contrast, HER2 expression is significantly less predictive (median MCC and AUC of 0.14 and 0.57, respectively). As the predictive accuracy of this CART model increases with larger training sets, its update with future data should result in even better accuracy.
Collapse
Affiliation(s)
- Adeolu Z. Ogunleye
- Cancer Research Center of Marseille (CRCM)INSERM U1068MarseilleF‐13009France
- Cancer Research Center of Marseille (CRCM)Institut Paoli‐CalmettesMarseilleF‐13009France
- Cancer Research Center of Marseille (CRCM)Aix‐Marseille UniversitéMarseilleF‐13284France
- Cancer Research Center of Marseille (CRCM)CNRS UMR7258MarseilleF‐13009France
| | - Chayanit Piyawajanusorn
- Cancer Research Center of Marseille (CRCM)INSERM U1068MarseilleF‐13009France
- Cancer Research Center of Marseille (CRCM)Institut Paoli‐CalmettesMarseilleF‐13009France
- Cancer Research Center of Marseille (CRCM)Aix‐Marseille UniversitéMarseilleF‐13284France
- Cancer Research Center of Marseille (CRCM)CNRS UMR7258MarseilleF‐13009France
| | - Anthony Gonçalves
- Cancer Research Center of Marseille (CRCM)INSERM U1068MarseilleF‐13009France
- Cancer Research Center of Marseille (CRCM)Institut Paoli‐CalmettesMarseilleF‐13009France
- Cancer Research Center of Marseille (CRCM)Aix‐Marseille UniversitéMarseilleF‐13284France
- Cancer Research Center of Marseille (CRCM)CNRS UMR7258MarseilleF‐13009France
| | - Ghita Ghislat
- Cancer Research Center of Marseille (CRCM)INSERM U1068MarseilleF‐13009France
- Cancer Research Center of Marseille (CRCM)Institut Paoli‐CalmettesMarseilleF‐13009France
- Cancer Research Center of Marseille (CRCM)Aix‐Marseille UniversitéMarseilleF‐13284France
- Cancer Research Center of Marseille (CRCM)CNRS UMR7258MarseilleF‐13009France
| | - Pedro J. Ballester
- Cancer Research Center of Marseille (CRCM)INSERM U1068MarseilleF‐13009France
- Cancer Research Center of Marseille (CRCM)Institut Paoli‐CalmettesMarseilleF‐13009France
- Cancer Research Center of Marseille (CRCM)Aix‐Marseille UniversitéMarseilleF‐13284France
- Cancer Research Center of Marseille (CRCM)CNRS UMR7258MarseilleF‐13009France
- Department of BioengineeringImperial College LondonLondonSW7 2AZUK
| |
Collapse
|
10
|
Gaulee P, Yang Z, Sura L, Xu H, Rossignol C, Weiss MD, Bliznyuk N. Concentration of Serum Biomarkers of Brain Injury in Neonates With a Low Cord pH With or Without Mild Hypoxic-Ischemic Encephalopathy. Front Neurol 2022; 13:934755. [PMID: 35873777 PMCID: PMC9301366 DOI: 10.3389/fneur.2022.934755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
Objective To determine the concentrations of four neuroprotein biomarkers and 68 miRNAs in neonates with low cord pH and/or mild hypoxic-ischemic encephalopathy (HIE). Study Design A prospective cohort study enrolled neonates with low cord pH (n = 18), moderate-severe HIE (n = 40), and healthy controls (n = 38). Groups provided serum samples at 0–6 h of life. The concentrations of biomarkers and miRNAs were compared between cohorts. Result The low cord pH and moderate-severe HIE groups had increased concentrations of GFAP, NFL and Tau compared to controls (P < 0.05, P < 0.001, respectively). NFL concentrations in mild HIE was higher than controls (P < 0.05) but less than moderate-severe HIE (P < 0.001). Of 68 miRNAs, 36 in low cord pH group and 40 in moderate-severe HIE were upregulated compared to controls (P < 0.05). Five miRNAs in low cord pH group (P < 0.05) and 3 in moderate-severe HIE were downregulated compared to controls (P < 0.05). Conclusion A biomarker panel in neonates with low cord pH may help clinicians make real-time decisions.
Collapse
Affiliation(s)
- Pratima Gaulee
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
- *Correspondence: Pratima Gaulee
| | - Zhihui Yang
- Department of Emergency Medicine, University of Florida, Gainesville, FL, United States
| | - Livia Sura
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Haiyan Xu
- Department of Emergency Medicine, University of Florida, Gainesville, FL, United States
| | - Candace Rossignol
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Michael D. Weiss
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Nikolay Bliznyuk
- Department of Agricultural and Biological Engineering, Biostatistics and Statistics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
11
|
MiRNAs in Lung Cancer: Diagnostic, Prognostic, and Therapeutic Potential. Diagnostics (Basel) 2022; 12:diagnostics12071610. [PMID: 35885514 PMCID: PMC9322918 DOI: 10.3390/diagnostics12071610] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the dominant emerging factor in cancer-related mortality around the globe. Therapeutic interventions for lung cancer are not up to par, mainly due to reoccurrence/relapse, chemoresistance, and late diagnosis. People are currently interested in miRNAs, which are small double-stranded (20–24 ribonucleotides) structures that regulate molecular targets (tumor suppressors, oncogenes) involved in tumorigeneses such as cell proliferation, apoptosis, metastasis, and angiogenesis via post-transcriptional regulation of mRNA. Many studies suggest the emerging role of miRNAs in lung cancer diagnostics, prognostics, and therapeutics. Therefore, it is necessary to intensely explore the miRNOME expression of lung tumors and the development of anti-cancer strategies. The current review focuses on the therapeutic, diagnostic, and prognostic potential of numerous miRNAs in lung cancer.
Collapse
|
12
|
Kocheril PA, Moore SC, Lenz KD, Mukundan H, Lilley LM. Progress Toward a Multiomic Understanding of Traumatic Brain Injury: A Review. Biomark Insights 2022; 17:11772719221105145. [PMID: 35719705 PMCID: PMC9201320 DOI: 10.1177/11772719221105145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/17/2022] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is not a single disease state but describes an array
of conditions associated with insult or injury to the brain. While some
individuals with TBI recover within a few days or months, others present with
persistent symptoms that can cause disability, neuropsychological trauma, and
even death. Understanding, diagnosing, and treating TBI is extremely complex for
many reasons, including the variable biomechanics of head impact, differences in
severity and location of injury, and individual patient characteristics. Because
of these confounding factors, the development of reliable diagnostics and
targeted treatments for brain injury remains elusive. We argue that the
development of effective diagnostic and therapeutic strategies for TBI requires
a deep understanding of human neurophysiology at the molecular level and that
the framework of multiomics may provide some effective solutions for the
diagnosis and treatment of this challenging condition. To this end, we present
here a comprehensive review of TBI biomarker candidates from across the
multiomic disciplines and compare them with known signatures associated with
other neuropsychological conditions, including Alzheimer’s disease and
Parkinson’s disease. We believe that this integrated view will facilitate a
deeper understanding of the pathophysiology of TBI and its potential links to
other neurological diseases.
Collapse
Affiliation(s)
- Philip A Kocheril
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Shepard C Moore
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Kiersten D Lenz
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Harshini Mukundan
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Laura M Lilley
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| |
Collapse
|
13
|
Gupta A, Vats A, Ghosal A, Mandal K, Sarkar R, Bhattacharya I, Das S, Pal R, Majumdar SS. Follicle-stimulating hormone-mediated decline in miR-92a-3p expression in pubertal mice Sertoli cells is crucial for germ cell differentiation and fertility. Cell Mol Life Sci 2022; 79:136. [PMID: 35181820 PMCID: PMC11072849 DOI: 10.1007/s00018-022-04174-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 02/07/2023]
Abstract
Sertoli cells (Sc) are the sole target of follicle-stimulating hormone (FSH) in the testis and attain functional maturation post-birth to significantly augment germ cell (Gc) division and differentiation at puberty. Despite having an operational microRNA (miRNA) machinery, limited information is available on miRNA-mediated regulation of Sc maturation and male fertility. We have shown before that miR-92a-3p levels decline in pubertal rat Sc. In response to FSH treatment, the expressions of FSH Receptor, Claudin11 and Klf4 were found to be elevated in pubertal rat Sc coinciding with our finding of FSH-induced decline in miR-92a-3p levels. To investigate the association of miR-92a-3p and spermatogenesis, we generated transgenic mice where such pubertal decline of miR-92a-3p was prevented by its overexpression in pubertal Sc under proximal Rhox5 promoter, which is known to be activated specifically at puberty, in Sc. Our in vivo observations provided substantial evidence that FSH-induced decline in miR-92a-3p expression during Sc maturation acts as an essential prerequisite for the pubertal onset of spermatogenesis. Elevated expression of miR-92a-3p in post-pubertal testes results into functionally compromised Sc, leading to impairment of the blood-testis barrier formation and apoptosis of pre-meiotic Gc, ultimately culminating into infertility. Collectively, our data suggest that regulation of miR-92a-3p expression is crucial for Sc-mediated induction of active spermatogenesis at puberty and regulation of male fertility.
Collapse
Affiliation(s)
- Alka Gupta
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, JNU Complex, New Delhi, 110067, India
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, USA
| | - Amandeep Vats
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, JNU Complex, New Delhi, 110067, India
| | - Anindita Ghosal
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, JNU Complex, New Delhi, 110067, India
| | - Kamal Mandal
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, JNU Complex, New Delhi, 110067, India
- Department of Laboratory Medicine, University of California, San Francisco, USA
| | - Rajesh Sarkar
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, JNU Complex, New Delhi, 110067, India
- Department of Medicine, University of Chicago, Chicago, USA
| | - Indrashis Bhattacharya
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, JNU Complex, New Delhi, 110067, India
- Dept. of Zoology, H. N. B. Garhwal University, Srinagar, Uttarakhand, India
| | - Sanjeev Das
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, JNU Complex, New Delhi, 110067, India
| | - Rahul Pal
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, JNU Complex, New Delhi, 110067, India
| | - Subeer S Majumdar
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, JNU Complex, New Delhi, 110067, India.
- Genes and Protein Engineering Laboratory, National Institute of Animal Biotechnology, Hyderabad, India.
| |
Collapse
|
14
|
MotieGhader H, Safavi E, Rezapour A, Amoodizaj FF, Iranifam RA. Drug repurposing for coronavirus (SARS-CoV-2) based on gene co-expression network analysis. Sci Rep 2021; 11:21872. [PMID: 34750486 PMCID: PMC8576023 DOI: 10.1038/s41598-021-01410-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome (SARS) is a highly contagious viral respiratory illness. This illness is spurred on by a coronavirus known as SARS-associated coronavirus (SARS-CoV). SARS was first detected in Asia in late February 2003. The genome of this virus is very similar to the SARS-CoV-2. Therefore, the study of SARS-CoV disease and the identification of effective drugs to treat this disease can be new clues for the treatment of SARS-Cov-2. This study aimed to discover novel potential drugs for SARS-CoV disease in order to treating SARS-Cov-2 disease based on a novel systems biology approach. To this end, gene co-expression network analysis was applied. First, the gene co-expression network was reconstructed for 1441 genes, and then two gene modules were discovered as significant modules. Next, a list of miRNAs and transcription factors that target gene co-expression modules' genes were gathered from the valid databases, and two sub-networks formed of transcription factors and miRNAs were established. Afterward, the list of the drugs targeting obtained sub-networks' genes was retrieved from the DGIDb database, and two drug-gene and drug-TF interaction networks were reconstructed. Finally, after conducting different network analyses, we proposed five drugs, including FLUOROURACIL, CISPLATIN, SIROLIMUS, CYCLOPHOSPHAMIDE, and METHYLDOPA, as candidate drugs for SARS-CoV-2 coronavirus treatment. Moreover, ten miRNAs including miR-193b, miR-192, miR-215, miR-34a, miR-16, miR-16, miR-92a, miR-30a, miR-7, and miR-26b were found to be significant miRNAs in treating SARS-CoV-2 coronavirus.
Collapse
Affiliation(s)
- Habib MotieGhader
- Department of Basic Sciences, Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | - Esmaeil Safavi
- Department of Basic Sciences, Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
- Department of Basic Sciences, Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Ali Rezapour
- Department of Animal Science, Faculty of Agriculture, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Fatemeh Firouzi Amoodizaj
- Department of Basic Sciences, Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Roya Asl Iranifam
- Department of Basic Sciences, Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
15
|
Guo H, Wang Y, Wang Z, Wang Z, Xue S. The diagnostic and prognostic value of miR-92a in gastric cancer: A systematic review and meta-analysis. Open Med (Wars) 2021; 16:1386-1394. [PMID: 34611549 PMCID: PMC8447977 DOI: 10.1515/med-2021-0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 01/30/2023] Open
Abstract
Background miR-92a is believed to have a significant role in the diagnosis and prognosis of different types of tumors, but the potential impact of its expression is still controversial due to the sample size. We conducted the meta-analysis to figure out whether miR-92a could be used as a detecting tool for assessing the prognosis of gastric cancer. Method A literature search was conducted by retrieving the Web of Science, PubMed, EMBASE, Chinese National Knowledge Infrastructure, VIP (Technology of Chongqing databases), and Wanfang databases (last updated by February 2020). The sensitivity (SEN), specificity (SPE), positive and negative likelihood ratios (PLR and NLR), diagnostic odds ratio (DOR), and area under the ROC curve (AUC) were pooled to explore the diagnostic performance of miR-92a. The pooled hazard ratios (HRs) and 95% CIs of miR-92a for overall survival (OS) were calculated to explore the prognostic performance of miR-92a. Results Nine articles containing 11 studies were included. The pooled SEN and SPE were 0.76 and 0.79. Besides, the pooled PLR and NLR were 3.7 and 0.30, and the pooled DOR was 12. AUC was 0.84, indicating a significant value of miR-92a in gastric cancer detection. For the prognostic analysis of miR-92a in gastric cancer, the univariate and multivariate data’s poor OS were 1.37 and 2.01. Conclusion The present meta-analysis demonstrated that miR-92a could be a potential biomarker for the detection of gastric cancer. miR-92a could also be used as a valuable indicator for predicting the prognosis of gastric cancer patients.
Collapse
Affiliation(s)
- Hanxu Guo
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, People's Republic of China
| | - Yuhang Wang
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, People's Republic of China
| | - Zhicheng Wang
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, People's Republic of China
| | - Zishu Wang
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, People's Republic of China
| | - Sheng Xue
- Department of Urology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, People's Republic of China
| |
Collapse
|
16
|
Epigenetic Alterations in Pediatric Sleep Apnea. Int J Mol Sci 2021; 22:ijms22179523. [PMID: 34502428 PMCID: PMC8430725 DOI: 10.3390/ijms22179523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 12/03/2022] Open
Abstract
Pediatric obstructive sleep apnea has significant negative effects on health and behavior in childhood including depression, failure to thrive, neurocognitive impairment, and behavioral issues. It is strongly associated with an increased risk for chronic adult disease such as obesity and diabetes, accelerated atherosclerosis, and endothelial dysfunction. Accumulating evidence suggests that adult-onset non-communicable diseases may originate from early life through a process by which an insult applied at a critical developmental window causes long-term effects on the structure or function of an organism. In recent years, there has been increased interest in the role of epigenetic mechanisms in the pathogenesis of adult disease susceptibility. Epigenetic mechanisms that influence adaptive variability include histone modifications, non-coding RNAs, and DNA methylation. This review will highlight what is currently known about the phenotypic associations of epigenetic modifications in pediatric obstructive sleep apnea and will emphasize the importance of epigenetic changes as both modulators of chronic disease and potential therapeutic targets.
Collapse
|
17
|
Mangiferin Inhibits Human Lung Adenocarcinoma by Suppressing MiR-27b and MiR-92a. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2822950. [PMID: 34335801 PMCID: PMC8292060 DOI: 10.1155/2021/2822950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/17/2021] [Accepted: 06/30/2021] [Indexed: 12/30/2022]
Abstract
Lung adenocarcinoma (LUAD) is one of the most prevalent malignancies. However, its mechanism and therapeutic strategy remain to be clarified. Mangiferin is a flavonoid derived from the leaves of mango trees of the lacquer family that has many pharmacological and physiological effects. This research aimed to elucidate the biological effect of mangiferin in LUAD cell lines and clarify the in vitro mechanism of mangiferin. Mangiferin was shown to significantly restrain the proliferation of LUAD cells (A549, H1299, and H2030 cells) in a dose- and time-dependent manner. Furthermore, mangiferin was capable of stimulating apoptosis, and more cells were blocked in G1 and S phase in the mangiferin-treated cells than in those not treated with mangiferin. Microarrays and micro-RNA sequencing data suggested that there is a higher level of miR-27b and miR-92a in LUAD tissues than in non-LUAD tissues. Additional experiments indicated that mangiferin may be related to the downregulated levels of miR-92a and miR-27b. In conclusion, mangiferin likely regulates proliferation and apoptosis in LUAD cells by reducing the expression levels of miR-92a and miR-27b.
Collapse
|
18
|
Radwan E, Shaltout AS, Mansor SG, Shafik EA, Abbas WA, Shehata MR, Ali M. Evaluation of circulating microRNAs-211 and 25 as diagnostic biomarkers of colorectal cancer. Mol Biol Rep 2021; 48:4601-4610. [PMID: 34132944 DOI: 10.1007/s11033-021-06493-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022]
Abstract
Colorectal cancer is one of the most prevalent and deadly cancers worldwide. MicroRNAs are short single stranded non-coding RNAs that play important roles in carcinogenesis, tumor growth and tumor survival. Circulating microRNAs are increasingly becoming efficient and important biomarkers for several types of cancers. Herein, we aim to evaluate the diagnostic potentials of plasma microRNA-211 and microRNA-25 in colorectal cancer patients. Forty-four patients diagnosed with colorectal cancer and 40 healthy controls were recruited for the present study. Expressions of circulating microRNAs -211 and 25 were assessed by quantitative real-time polymerase chain reaction (RT-qPCR). Expression of transforming growth factor-beta, a key factor in tumorigenesis and a key inducer of epithelial to mesenchymal transition was assessed by enzyme-linked immunosorbent assay (ELISA) in patients' tissue and plasma. Our results demonstrated upregulated expressions of plasma microRNAs-211 and 25 correlated with the high transforming growth factor-beta (TGF-β1) expression in patients. In addition, plasma levels were positively correlated with lymph node metastasis. Moreover, receiver operating characteristic analysis demonstrated the reliability of microRNAs-211 and 25 for discriminating colorectal cancer patients from healthy individuals. MicroRNA-211 and microRNA-25 might have a tumorigenic role in colorectal cancer and their plasma levels could be potential biomarkers in its diagnosis.
Collapse
Affiliation(s)
- Eman Radwan
- Faculty of Medicine, Department of Medical Biochemistry, Assiut University, Assiut, 71515, Egypt.,Department of Biochemistry, Sphinx University, Assiut, Egypt
| | - Asmaa S Shaltout
- Faculty of Medicine, Department of Microbiology, Assiut University, Assiut, Egypt
| | - Shima Gafar Mansor
- Department of Oncological Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Engy A Shafik
- Department of Oncological Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Wael A Abbas
- Faculty of Medicine, Department of Internal Medicine, Assiut University, Assiut, Egypt
| | | | - Maha Ali
- Faculty of Medicine, Department of Medical Biochemistry, Assiut University, Assiut, 71515, Egypt.
| |
Collapse
|
19
|
Charpigny G, Marquant-Le Guienne B, Richard C, Adenot P, Dubois O, Gélin V, Peynot N, Daniel N, Brochard V, Nuttinck F. PGE2 Supplementation of Oocyte Culture Media Improves the Developmental and Cryotolerance Performance of Bovine Blastocysts Derived From a Serum-Free in vitro Production System, Mirroring the Inner Cell Mass Transcriptome. Front Cell Dev Biol 2021; 9:672948. [PMID: 34164396 PMCID: PMC8215579 DOI: 10.3389/fcell.2021.672948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Abstract
The culture media used throughout the in vitro production (IVP) of bovine embryos remain complex. The serum added to culture media in order to improve embryo development negatively impacts the cryotolerance of blastocysts. Periconceptional prostaglandin E2 (PGE2) signaling is known to exert prosurvival effects on in vitro-generated blastocysts. The purpose of the present study was to evaluate the effects on developmental and cryotolerance performance of a serum-free (SF) IVP system that included defined oocyte culture media supplemented or not with PGE2, versus serum-containing (SC) IVP. RNA-sequencing analysis was used to examine the gene expression of ICM derived under the different IVP conditions. We assessed the degree of cryotolerance of grade-I blastocysts during a three-day post-thaw culture by measuring survival and hatching rates, counting trophectoderm and inner cell mass (ICM) blastomere numbers. We also determined the proportion of ICM cells expressing octamer-binding transcription factor 4 protein (OCT4/POU5F1). We showed that grade-I blastocyst development rates under SF + PGE2 conditions were similar to those obtained under SC conditions, although the cleavage rate remained significantly lower. SC IVP conditions induced changes to ICM gene expression relative to several metabolic processes, catabolic activities, cell death and apoptosis. These alterations were associated with significantly higher levels of ICM cell death at day 7 post-fertilization, and lower survival and hatching rates after thawing. SF IVP conditions supplemented or not with PGE2 induced changes to ICM gene expression related to DNA replication, metabolism and double-strand break repair processes, and were associated with significantly larger ICM cell populations after thawing. SF + PGE2 IVP induced changes to ICM gene expression related to epigenetic regulation and were associated with a significantly higher proportion of ICM cells expressing OCT4. For the first time, our study thus offers a comprehensive analysis of the ICM transcriptome regulated by IVP culture conditions in terms of the cellular changes revealed during culture for three days after thawing.
Collapse
Affiliation(s)
- Gilles Charpigny
- UVSQ, INRAE, BREED, Université Paris-Saclay, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | | | - Christophe Richard
- UVSQ, INRAE, BREED, Université Paris-Saclay, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Pierre Adenot
- UVSQ, INRAE, BREED, Université Paris-Saclay, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France.,INRAE, MIMA2, Université Paris-Saclay, Jouy-en-Josas, France
| | - Olivier Dubois
- UVSQ, INRAE, BREED, Université Paris-Saclay, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Valérie Gélin
- UVSQ, INRAE, BREED, Université Paris-Saclay, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Nathalie Peynot
- UVSQ, INRAE, BREED, Université Paris-Saclay, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Nathalie Daniel
- UVSQ, INRAE, BREED, Université Paris-Saclay, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Vincent Brochard
- UVSQ, INRAE, BREED, Université Paris-Saclay, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Fabienne Nuttinck
- UVSQ, INRAE, BREED, Université Paris-Saclay, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| |
Collapse
|
20
|
Yuan H, Su J, Hu S, Wei P. Expression of miR-92a, miR-224 and miR-25 in non-small cell lung cancer and their correlation with clinical characteristics. Am J Transl Res 2021; 13:5561-5567. [PMID: 34150158 PMCID: PMC8205675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To analyze the correlation of the expression of microRNA-92a (miR-92a), microRNA-224 (miR-224), and microRNA-25 (miR-25) in non-small cell lung cancer with its clinical characteristics. METHODS This prospective study was performed in 125 non-small cell lung cancer patients admitted to our hospital between January 2019 and January 2020. All patients' cancer and adjacent tissue were collected and the expression of miR-92a, miR-224, and miR-25 were detected using real-time fluorescence quantitative RT-PCR. Data were analyzed using SPSS statistical software (version 20.0). Correlation analysis was conducted using Pearson correlation coefficient. RESULTS Compared with adjacent tissue, the relative expression of miR-92a, miR-224, and miR-25 in cancer tissue were increased (all P<0.001). There was no correlation between the expression of miR-92a, miR-224, and miR-25 and baseline data like gender, age, smoking history, and tumor size (all P>0.05). The relative expression of miR-92a, miR-224 and miR-25 in differentiated cancer patients were higher than those in highly and moderately differentiated cancer patients (all P<0.05). The relative expression of miR-92a, miR-224 and miR-25 in patients with lymph node metastasis (LNM) were increased when compared with those had no LNM (all P<0.001). Compared with stage I and II patients, the relative expression of miR-92a, miR-224 and miR-25 in stage III and IV patients were increased (all P<0.001). The relative expression of miR-92a, miR-224, and miR-25 were positively correlated to each other (all P<0.01). CONCLUSION miR-92a, miR-224, and miR-25 are overexpressed in non-small cell lung cancer and the expressions are related to the degree of differentiation, presence or absence of LNM, and TNM staging. In addition, the expression of miR-92a, miR-224 and miR-25 are positively correlated to each other. This suggests that miR-92a, miR-224, and miR-25 cooperatively participated in the occurrence and development of non-small cell lung cancer.
Collapse
Affiliation(s)
- Hao Yuan
- Department of Oncology, Guigang City People’s HospitalGuigang, Guangxi Zhuang Autonomous Region, China
| | - Jiajia Su
- Department of Echocardiography, Guigang City Hospital of Traditional Chinese MedicineGuigang, Guangxi Zhuang Autonomous Region, China
| | - Siqin Hu
- Department of Oncology, People’s Hospital of LonghuaShenzhen, Guangdong Province, China
| | - Peng Wei
- Department of Pulmonary and Critical Care Medicine, Guigang City People’s HospitalGuigang, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
21
|
Liyanage TD, Nikapitiya C, Lee J, De Zoysa M. Molecular insight into regulation of miRNAs in the spleen of zebrafish (Danio rerio) upon pathogenic Streptococcus parauberis infection. FISH & SHELLFISH IMMUNOLOGY 2020; 106:898-909. [PMID: 32889099 DOI: 10.1016/j.fsi.2020.08.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/10/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
MicroRNAs (miRNAs) constitute a group of small non-coding RNAs (~22 nucleotides) and one of their main functions is to regulate the immune responses. Gram-positive bacterium, Streptococcus parauberis is the main causative agent of "Streptococcosis" in wide range of fish species. In this study, we performed high throughput sequencing analysis to identify the miRNA profile against S. parauberis infection in the spleen of zebrafish (Danio rerio). Overall, 349 known and 151 novel miRNAs were discovered. Among them, 12 known miRNAs (dre-miR-34b, dre-miR-135a, dre-miR-200b-5p, dre-miR-146b, dre-miR-31, dre-miR-17a-3p, dre-miR-222a-3p, dre-miR-731, dre-miR-301b-3p and dre-miR-30a-3p) and 9 novel miRNAs were differentially expressed (DE) in the spleen of S. parauberis challenged zebrafish. The identified 12 DE miRNAs were predicted to regulate 721 target genes. We confirmed the miRNA expression results by validating selected known and novel DE miRNAs using qRT-PCR. Gene Ontology (GO), Kyoto Encyclopedia of Genes (KEGG) pathway analysis and miRNA-mRNA interactions implies that specific target genes of DE miRNAs are associated with immune responses. The enriched pathways included Toll-like receptor (TLR), C-type lectin, NOD-like receptor, and RIG-I-like receptor signaling pathways, etc. Especially, dre-miR-200b-5p, dre-miR-146b, dre-miR-731, dre-miR-222a-3p, and dre-miR-34b were able to target potential immune-related genes such as il10, irak1, traf6, hspa8 and ikbke upon S. parauberis challenge. Thus, overall results could lay a foundation to understand the underlying immune regulatory role of miRNAs in response to pathogenic S. parauberis infection in teleosts.
Collapse
Affiliation(s)
- T D Liyanage
- College of Veterinary Medicine, Chungnam National University, Yuseong-gu Daejeon, 34134, Republic of Korea
| | - Chamilani Nikapitiya
- College of Veterinary Medicine, Chungnam National University, Yuseong-gu Daejeon, 34134, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Mahanama De Zoysa
- College of Veterinary Medicine, Chungnam National University, Yuseong-gu Daejeon, 34134, Republic of Korea.
| |
Collapse
|
22
|
Sell SL, Widen SG, Prough DS, Hellmich HL. Principal component analysis of blood microRNA datasets facilitates diagnosis of diverse diseases. PLoS One 2020; 15:e0234185. [PMID: 32502186 PMCID: PMC7274418 DOI: 10.1371/journal.pone.0234185] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Early, ideally pre-symptomatic, recognition of common diseases (e.g., heart disease, cancer, diabetes, Alzheimer’s disease) facilitates early treatment or lifestyle modifications, such as diet and exercise. Sensitive, specific identification of diseases using blood samples would facilitate early recognition. We explored the potential of disease identification in high dimensional blood microRNA (miRNA) datasets using a powerful data reduction method: principal component analysis (PCA). Using Qlucore Omics Explorer (QOE), a dynamic, interactive visualization-guided bioinformatics program with a built-in statistical platform, we analyzed publicly available blood miRNA datasets from the Gene Expression Omnibus (GEO) maintained at the National Center for Biotechnology Information at the National Institutes of Health (NIH). The miRNA expression profiles were generated from real time PCR arrays, microarrays or next generation sequencing of biologic materials (e.g., blood, serum or blood components such as platelets). PCA identified the top three principal components that distinguished cohorts of patients with specific diseases (e.g., heart disease, stroke, hypertension, sepsis, diabetes, specific types of cancer, HIV, hemophilia, subtypes of meningitis, multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer’s disease, mild cognitive impairment, aging, and autism), from healthy subjects. Literature searches verified the functional relevance of the discriminating miRNAs. Our goal is to assemble PCA and heatmap analyses of existing and future blood miRNA datasets into a clinical reference database to facilitate the diagnosis of diseases using routine blood draws.
Collapse
Affiliation(s)
- Stacy L. Sell
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Steven G. Widen
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Donald S. Prough
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Helen L. Hellmich
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
23
|
Expression of Genes Involved in Axon Guidance: How Much Have We Learned? Int J Mol Sci 2020; 21:ijms21103566. [PMID: 32443632 PMCID: PMC7278939 DOI: 10.3390/ijms21103566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 12/20/2022] Open
Abstract
Neuronal axons are guided to their target during the development of the brain. Axon guidance allows the formation of intricate neural circuits that control the function of the brain, and thus the behavior. As the axons travel in the brain to find their target, they encounter various axon guidance cues, which interact with the receptors on the tip of the growth cone to permit growth along different signaling pathways. Although many scientists have performed numerous studies on axon guidance signaling pathways, we still have an incomplete understanding of the axon guidance system. Lately, studies on axon guidance have shifted from studying the signal transduction pathways to studying other molecular features of axon guidance, such as the gene expression. These new studies present evidence for different molecular features that broaden our understanding of axon guidance. Hence, in this review we will introduce recent studies that illustrate different molecular features of axon guidance. In particular, we will review literature that demonstrates how axon guidance cues and receptors regulate local translation of axonal genes and how the expression of guidance cues and receptors are regulated both transcriptionally and post-transcriptionally. Moreover, we will highlight the pathological relevance of axon guidance molecules to specific diseases.
Collapse
|
24
|
Norouzinia M, Zamanian Azodi M, Najafgholizadeh Seyfi D, Kardan A, Naseh A, Akbari Z. Predication of hub target genes of differentially expressed microRNAs contributing to Helicobacter pylori infection in gastric non-cancerous tissue. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2019; 12:S44-S50. [PMID: 32099601 PMCID: PMC7011053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AIM The main goal of this investigation was to provide an overview on H.pylori effect on gastric tissue via bioinformatics analysis of microarray-identified miRNAs and its target genes. BACKGROUND MicroRNAs which control about 30 to 60% of gene expression in human body play a critical role in different cell growth stages. Expression modification of non-coding (NC) RNAs in H.pylori infections requires further investigations to provide better understanding of their roles in the body. METHODS GSE54397, the microRNA microarray dataset, was analyzed by GEO2R, the online GEO database for detection of differentially expressed microRNAs and lastly the potential target genes as well as their associated pathways. RESULTS A total of 244 miRNAs were detected as differentially expressed (p<0.05 and FC>2) in non-cancerous tissue of gastric with H.pylori infection in comparison with tissues without H.pylori infection. The findings indicated that hub microRNAs and target genes of up-regulated network are KIF9, DCTN3, and CA5BP1 along with hsa-miR-519d, hsa-miR-573, hsa-miR-646, hsa-miR-92a-1, hsa-miR-186, and hsa-miR-892a, respectively. For the down-regulated network, genes of RABGAP1, HSPB11 and microRNAs of hsa-miR-620, hsa-miR-19b-2, hsa-miR-555, and hsa-let-7f-2 were hubs. Most of the up-regulated microRNAs are involved in gastric cancer development while there is no evidence for the down-regulated ones. Yet, all of the hub down-regulated miRNAs are reported to have associations with different kinds of cancer. CONCLUSION The introduced hub miRNAs and genes may serve as feasible markers in the mechanisms of H.pylori infection for different kinds of gastric diseases, in particular gastric cancer. However, their role requires further investigations.
Collapse
Affiliation(s)
- Mohsen Norouzinia
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Zamanian Azodi
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Diba Najafgholizadeh Seyfi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Kardan
- Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Ali Naseh
- Pediatric and Neonatal Ward, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Akbari
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|