1
|
Khanijou JK, Hee YT, Scipion CPM, Chen X, Selvarajoo K. Systems biology approach for enhancing limonene yield by re-engineering Escherichia coli. NPJ Syst Biol Appl 2024; 10:109. [PMID: 39353984 PMCID: PMC11445242 DOI: 10.1038/s41540-024-00440-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024] Open
Abstract
Engineered microorganisms have emerged as viable alternatives for limonene production. However, issues such as low enzyme abundance or activities, and regulatory feedback/forward inhibition may reduce yields. To understand the underlying metabolism, we adopted a systems biology approach for an engineered limonene-producing Escherichia coli strain K-12 MG1655. Firstly, we generated time-series metabolomics data and, secondly, developed a dynamic model based on enzyme dynamics to track the native metabolic networks and the engineered mevalonate pathway. After several iterations of model fitting with experimental profiles, which also included 13C-tracer studies, we performed in silico knockouts (KOs) of all enzymes to identify bottleneck(s) for optimal limonene yields. The simulations indicated that ALDH/ADH (aldehyde dehydrogenase/alcohol dehydrogenase) and LDH (lactate dehydrogenase) suppression, and HK (hexokinase) enhancement would increase limonene yields. Experimental confirmation was achieved, where ALDH-ADH and LDH KOs, and HK overexpression improved limonene yield by 8- to 11-fold. Our systems biology approach can guide microbial strain re-engineering for optimal target production.
Collapse
Affiliation(s)
- Jasmeet Kaur Khanijou
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore, 138669, Singapore
| | - Yan Ting Hee
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis St, Matrix, Singapore, 138671, Singapore
| | | | - Xixian Chen
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore, 138669, Singapore
| | - Kumar Selvarajoo
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis St, Matrix, Singapore, 138671, Singapore.
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore (NUS), Singapore, Singapore.
- School of Biological Sciences, Nanyang Technological University (NTU), Singapore, Singapore.
| |
Collapse
|
2
|
Gilbert BR, Luthey-Schulten Z. Replicating Chromosomes in Whole-Cell Models of Bacteria. Methods Mol Biol 2024; 2819:625-653. [PMID: 39028527 DOI: 10.1007/978-1-0716-3930-6_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Computational models of cells cannot be considered complete unless they include the most fundamental process of life, the replication of genetic material. In a recent study, we presented a computational framework to model systems of replicating bacterial chromosomes as polymers at 10 bp resolution with Brownian dynamics. This approach was used to investigate changes in chromosome organization during replication and extend the applicability of an existing whole-cell model (WCM) for a genetically minimal bacterium, JCVI-syn3A, to the entire cell cycle. To achieve cell-scale chromosome structures that are realistic, we modeled the chromosome as a self-avoiding homopolymer with bending and torsional stiffnesses that capture the essential mechanical properties of dsDNA in Syn3A. Additionally, the polymer interacts with ribosomes distributed according to cryo-electron tomograms of Syn3A. The polymer model was further augmented by computational models of loop extrusion by structural maintenance of chromosomes (SMC) protein complexes and topoisomerase action, and the modeling and analysis of multi-fork replication states.
Collapse
Affiliation(s)
- Benjamin R Gilbert
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Zaida Luthey-Schulten
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- NSF Science and Technology Center for Quantitative Cell Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
3
|
Khanijou JK, Hee YT, Selvarajoo K. Identifying Key In Silico Knockout for Enhancement of Limonene Yield Through Dynamic Metabolic Modelling. Methods Mol Biol 2024; 2745:3-19. [PMID: 38060176 DOI: 10.1007/978-1-0716-3577-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Living cells display dynamic and complex behaviors. To understand their response and to infer novel insights not possible with traditional reductionist approaches, over the last few decades various computational modelling methodologies have been developed. In this chapter, we focus on modelling the dynamic metabolic response, using linear and nonlinear ordinary differential equations, of an engineered Escherichia coli MG1655 strain with plasmid pJBEI-6409 that produces limonene. We show the systems biology steps involved from collecting time-series data of living cells, to dynamic model creation and fitting the model with experimental responses using COPASI software.
Collapse
Affiliation(s)
- Jasmeet Kaur Khanijou
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Yan Ting Hee
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Kumar Selvarajoo
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore (NUS), Singapore, Republic of Singapore.
- School of Biological Sciences, Nanyang Technological University (NTU), Singapore, Republic of Singapore.
| |
Collapse
|
4
|
Kaizu K, Takahashi K. Technologies for whole-cell modeling: Genome-wide reconstruction of a cell in silico. Dev Growth Differ 2023; 65:554-564. [PMID: 37856476 PMCID: PMC11520977 DOI: 10.1111/dgd.12897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 09/06/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
With advances in high-throughput, large-scale in vivo measurement and genome modification techniques at the single-nucleotide level, there is an increasing demand for the development of new technologies for the flexible design and control of cellular systems. Computer-aided design is a powerful tool to design new cells. Whole-cell modeling aims to integrate various cellular subsystems, determine their interactions and cooperative mechanisms, and predict comprehensive cellular behaviors by computational simulations on a genome-wide scale. It has been applied to prokaryotes, yeasts, and higher eukaryotic cells, and utilized in a wide range of applications, including production of valuable substances, drug discovery, and controlled differentiation. Whole-cell modeling, consisting of several thousand elements with diverse scales and properties, requires innovative model construction, simulation, and analysis techniques. Furthermore, whole-cell modeling has been extended to multiple scales, including high-resolution modeling at the single-nucleotide and single-amino acid levels and multicellular modeling of tissues and organs. This review presents an overview of the current state of whole-cell modeling, discusses the novel computational and experimental technologies driving it, and introduces further developments toward multihierarchical modeling on a whole-genome scale.
Collapse
|
5
|
Khalid S, Brandner AF, Juraschko N, Newman KE, Pedebos C, Prakaash D, Smith IPS, Waller C, Weerakoon D. Computational microbiology of bacteria: Advancements in molecular dynamics simulations. Structure 2023; 31:1320-1327. [PMID: 37875115 DOI: 10.1016/j.str.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/04/2023] [Accepted: 09/28/2023] [Indexed: 10/26/2023]
Abstract
Microbiology is traditionally considered within the context of wet laboratory methodologies. Computational techniques have a great potential to contribute to microbiology. Here, we describe our loose definition of "computational microbiology" and provide a short survey focused on molecular dynamics simulations of bacterial systems that fall within this definition. It is our contention that increased compositional complexity and realistic levels of molecular crowding within simulated systems are key for bridging the divide between experimental and computational microbiology.
Collapse
Affiliation(s)
- Syma Khalid
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK; School of Chemistry, University of Southampton, SO17 1BJ Southampton, UK.
| | - Astrid F Brandner
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK
| | - Nikolai Juraschko
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK; Artificial Intelligence and Informatics, The Rosalind Franklin Institute, Didcot, UK
| | - Kahlan E Newman
- School of Chemistry, University of Southampton, SO17 1BJ Southampton, UK
| | - Conrado Pedebos
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK; Programa de Pós-Graduação em Biociências (PPGBio), Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, Brazil
| | - Dheeraj Prakaash
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK
| | - Iain P S Smith
- School of Chemistry, University of Southampton, SO17 1BJ Southampton, UK
| | - Callum Waller
- School of Chemistry, University of Southampton, SO17 1BJ Southampton, UK
| | | |
Collapse
|
6
|
Gilbert BR, Thornburg ZR, Brier TA, Stevens JA, Grünewald F, Stone JE, Marrink SJ, Luthey-Schulten Z. Dynamics of chromosome organization in a minimal bacterial cell. Front Cell Dev Biol 2023; 11:1214962. [PMID: 37621774 PMCID: PMC10445541 DOI: 10.3389/fcell.2023.1214962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/10/2023] [Indexed: 08/26/2023] Open
Abstract
Computational models of cells cannot be considered complete unless they include the most fundamental process of life, the replication and inheritance of genetic material. By creating a computational framework to model systems of replicating bacterial chromosomes as polymers at 10 bp resolution with Brownian dynamics, we investigate changes in chromosome organization during replication and extend the applicability of an existing whole-cell model (WCM) for a genetically minimal bacterium, JCVI-syn3A, to the entire cell-cycle. To achieve cell-scale chromosome structures that are realistic, we model the chromosome as a self-avoiding homopolymer with bending and torsional stiffnesses that capture the essential mechanical properties of dsDNA in Syn3A. In addition, the conformations of the circular DNA must avoid overlapping with ribosomes identitied in cryo-electron tomograms. While Syn3A lacks the complex regulatory systems known to orchestrate chromosome segregation in other bacteria, its minimized genome retains essential loop-extruding structural maintenance of chromosomes (SMC) protein complexes (SMC-scpAB) and topoisomerases. Through implementing the effects of these proteins in our simulations of replicating chromosomes, we find that they alone are sufficient for simultaneous chromosome segregation across all generations within nested theta structures. This supports previous studies suggesting loop-extrusion serves as a near-universal mechanism for chromosome organization within bacterial and eukaryotic cells. Furthermore, we analyze ribosome diffusion under the influence of the chromosome and calculate in silico chromosome contact maps that capture inter-daughter interactions. Finally, we present a methodology to map the polymer model of the chromosome to a Martini coarse-grained representation to prepare molecular dynamics models of entire Syn3A cells, which serves as an ultimate means of validation for cell states predicted by the WCM.
Collapse
Affiliation(s)
- Benjamin R. Gilbert
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Zane R. Thornburg
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Troy A. Brier
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Jan A. Stevens
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Fabian Grünewald
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - John E. Stone
- NVIDIA Corporation, Santa Clara, CA, United States
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Siewert J. Marrink
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Zaida Luthey-Schulten
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- NSF Center for the Physics of Living Cells, Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
7
|
Sakai A, Jonker AJ, Nelissen FHT, Kalb EM, van Sluijs B, Heus HA, Adamala KP, Glass JI, Huck WTS. Cell-Free Expression System Derived from a Near-Minimal Synthetic Bacterium. ACS Synth Biol 2023; 12:1616-1623. [PMID: 37278603 PMCID: PMC10278164 DOI: 10.1021/acssynbio.3c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Indexed: 06/07/2023]
Abstract
Cell-free expression (CFE) systems are fundamental to reconstituting metabolic pathways in vitro toward the construction of a synthetic cell. Although an Escherichia coli-based CFE system is well-established, simpler model organisms are necessary to understand the principles behind life-like behavior. Here, we report the successful creation of a CFE system derived from JCVI-syn3A (Syn3A), the minimal synthetic bacterium. Previously, high ribonuclease activity in Syn3A lysates impeded the establishment of functional CFE systems. Now, we describe how an unusual cell lysis method (nitrogen decompression) yielded Syn3A lysates with reduced ribonuclease activity that supported in vitro expression. To improve the protein yields in the Syn3A CFE system, we optimized the Syn3A CFE reaction mixture using an active machine learning tool. The optimized reaction mixture improved the CFE 3.2-fold compared to the preoptimized condition. This is the first report of a functional CFE system derived from a minimal synthetic bacterium, enabling further advances in bottom-up synthetic biology.
Collapse
Affiliation(s)
- Andrei Sakai
- Institute
for Molecules and Materials, Radboud University, Nijmegen 6525AJ, The Netherlands
| | - Aafke J. Jonker
- Institute
for Molecules and Materials, Radboud University, Nijmegen 6525AJ, The Netherlands
| | - Frank H. T. Nelissen
- Institute
for Molecules and Materials, Radboud University, Nijmegen 6525AJ, The Netherlands
| | - Evan M. Kalb
- Department
of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Bob van Sluijs
- Institute
for Molecules and Materials, Radboud University, Nijmegen 6525AJ, The Netherlands
| | - Hans A. Heus
- Institute
for Molecules and Materials, Radboud University, Nijmegen 6525AJ, The Netherlands
| | - Katarzyna P. Adamala
- Department
of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - John I. Glass
- Synthetic
Biology & Bioenergy, J. Craig Venter
Institute, La Jolla, California 92037, United States
| | - Wilhelm T. S. Huck
- Institute
for Molecules and Materials, Radboud University, Nijmegen 6525AJ, The Netherlands
| |
Collapse
|
8
|
Pelletier JF, Glass JI, Strychalski EA. Cellular mechanics during division of a genomically minimal cell. Trends Cell Biol 2022; 32:900-907. [PMID: 35907702 DOI: 10.1016/j.tcb.2022.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 01/21/2023]
Abstract
Genomically minimal cells, such as JCVI-syn3.0 and JCVI-syn3A, offer an empowering framework to study relationships between genotype and phenotype. With a polygenic basis, the fundamental physiological process of cell division depends on multiple genes of known and unknown function in JCVI-syn3A. A physical description of cellular mechanics can further understanding of the contributions of genes to cell division in this genomically minimal context. We review current knowledge on genes in JCVI-syn3A contributing to two physical parameters relevant to cell division, namely, the surface-area-to-volume ratio and membrane curvature. This physical view of JCVI-syn3A may inform the attribution of gene functions and conserved processes in bacterial physiology, as well as whole-cell models and the engineering of synthetic cells.
Collapse
Affiliation(s)
- James F Pelletier
- Centro Nacional de Biotecnología, 28049 Madrid, Spain; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - John I Glass
- J. Craig Venter Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
9
|
Goodsell DS. Integrative illustration of a JCVI-syn3A minimal cell. J Integr Bioinform 2022; 19:jib-2022-0013. [PMID: 35749071 PMCID: PMC9377704 DOI: 10.1515/jib-2022-0013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/05/2022] [Accepted: 06/02/2022] [Indexed: 01/22/2023] Open
Abstract
Data from genomics, proteomics, structural biology and cryo-electron microscopy are integrated into a structural illustration of a cross section through an entire JCVI-syn3.0 minimal cell. The illustration is designed with several goals: to inspire excitement in science, to depict the underlying scientific results accurately, and to be feasible in traditional media. Design choices to achieve these goals include reduction of visual complexity with simplified representations, use of orthographic projection to retain scale relationships, and an approach to color that highlights functional compartments of the cell. Given that this simple cell provides an attractive laboratory for exploring the central processes needed for life, several functional narratives are included in the illustration, including division of the cell and the first depiction of an entire cellular proteome. The illustration lays the foundation for 3D molecular modeling of this cell.
Collapse
Affiliation(s)
- David S. Goodsell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA92037, USA
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ08854, USA
| |
Collapse
|
10
|
Sakai A, Deich CR, Nelissen FHT, Jonker AJ, Bittencourt DMDC, Kempes CP, Wise KS, Heus HA, Huck WTS, Adamala KP, Glass JI. Traditional Protocols and Optimization Methods Lead to Absent Expression in a Mycoplasma Cell-Free Gene Expression Platform. Synth Biol (Oxf) 2022; 7:ysac008. [PMID: 35774105 PMCID: PMC9239315 DOI: 10.1093/synbio/ysac008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 04/11/2022] [Accepted: 05/20/2022] [Indexed: 11/23/2022] Open
Abstract
Cell-free expression (CFE) systems are one of the main platforms for building synthetic cells. A major drawback is the orthogonality of cell-free systems across species. To generate a CFE system compatible with recently established minimal cell constructs, we attempted to optimize a Mycoplasma bacterium-based CFE system using lysates of the genome-minimized cell JCVI-syn3A (Syn3A) and its close phylogenetic relative Mycoplasma capricolum (Mcap). To produce mycoplasma-derived crude lysates, we systematically tested methods commonly used for bacteria, based on the S30 protocol of Escherichia coli. Unexpectedly, after numerous attempts to optimize lysate production methods or composition of feeding buffer, none of the Mcap or Syn3A lysates supported cell-free gene expression. Only modest levels of in vitro transcription of RNA aptamers were observed. While our experimental systems were intended to perform transcription and translation, our assays focused on RNA. Further investigations identified persistently high ribonuclease (RNase) activity in all lysates, despite removal of recognizable nucleases from the respective genomes and attempts to inhibit nuclease activities in assorted CFE preparations. An alternative method using digitonin to permeabilize the mycoplasma cell membrane produced a lysate with diminished RNase activity yet still was unable to support cell-free gene expression. We found that intact mycoplasma cells poisoned E. coli cell-free extracts by degrading ribosomal RNAs, indicating that the mycoplasma cells, even the minimal cell, have a surface-associated RNase activity. However, it is not clear which gene encodes the RNase. This work summarizes attempts to produce mycoplasma-based CFE and serves as a cautionary tale for researchers entering this field.
Graphical Abstract
Collapse
Affiliation(s)
- Andrei Sakai
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Christopher R Deich
- Department of Genetics, Cell Biology and Development, University of Minnesota, 420 Washington Avenue SE, Minneapolis, MN 55455, USA
| | - Frank H T Nelissen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Aafke J Jonker
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Daniela M de C Bittencourt
- The J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA 92037, USA
- Embrapa Genetic Resources and Biotechnology/National Institute of Science and Technology - Synthetic Biology, Parque Estação Biológica, PqEB, Av. W5 Norte (final), Brasília, DF, 70770-917, Brazil, Norte (final), Brasília, DF, 70770-917, Brazil
| | | | - Kim S Wise
- The J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA 92037, USA
| | - Hans A Heus
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Katarzyna P Adamala
- Department of Genetics, Cell Biology and Development, University of Minnesota, 420 Washington Avenue SE, Minneapolis, MN 55455, USA
| | - John I Glass
- The J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA 92037, USA
| |
Collapse
|
11
|
Thornburg ZR, Bianchi DM, Brier TA, Gilbert BR, Earnest TM, Melo MC, Safronova N, Sáenz JP, Cook AT, Wise KS, Hutchison CA, Smith HO, Glass JI, Luthey-Schulten Z. Fundamental behaviors emerge from simulations of a living minimal cell. Cell 2022; 185:345-360.e28. [PMID: 35063075 PMCID: PMC9985924 DOI: 10.1016/j.cell.2021.12.025] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/01/2021] [Accepted: 12/17/2021] [Indexed: 01/18/2023]
Abstract
We present a whole-cell fully dynamical kinetic model (WCM) of JCVI-syn3A, a minimal cell with a reduced genome of 493 genes that has retained few regulatory proteins or small RNAs. Cryo-electron tomograms provide the cell geometry and ribosome distributions. Time-dependent behaviors of concentrations and reaction fluxes from stochastic-deterministic simulations over a cell cycle reveal how the cell balances demands of its metabolism, genetic information processes, and growth, and offer insight into the principles of life for this minimal cell. The energy economy of each process including active transport of amino acids, nucleosides, and ions is analyzed. WCM reveals how emergent imbalances lead to slowdowns in the rates of transcription and translation. Integration of experimental data is critical in building a kinetic model from which emerges a genome-wide distribution of mRNA half-lives, multiple DNA replication events that can be compared to qPCR results, and the experimentally observed doubling behavior.
Collapse
Affiliation(s)
- Zane R. Thornburg
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - David M. Bianchi
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Troy A. Brier
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Benjamin R. Gilbert
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tyler M. Earnest
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Marcelo C.R. Melo
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nataliya Safronova
- Technische Universität Dresden, B CUBE Center for Molecular Bioengineering, 01307 Dresden, Germany
| | - James P. Sáenz
- Technische Universität Dresden, B CUBE Center for Molecular Bioengineering, 01307 Dresden, Germany
| | | | - Kim S. Wise
- J. Craig Venter Institute, La Jolla, CA 92037, USA
| | | | | | | | - Zaida Luthey-Schulten
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; NSF Center for the Physics of Living Cells, Urbana, IL 61801, USA; NIH Center for Macromolecular Modeling and Bioinformatics, Urbana, IL 61801, USA.
| |
Collapse
|
12
|
Luthey-Schulten Z. Integrating experiments, theory and simulations into whole-cell models. Nat Methods 2021; 18:446-447. [PMID: 33963354 DOI: 10.1038/s41592-021-01150-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zaida Luthey-Schulten
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
13
|
Gilbert BR, Thornburg ZR, Lam V, Rashid FZM, Glass JI, Villa E, Dame RT, Luthey-Schulten Z. Generating Chromosome Geometries in a Minimal Cell From Cryo-Electron Tomograms and Chromosome Conformation Capture Maps. Front Mol Biosci 2021; 8:644133. [PMID: 34368224 PMCID: PMC8339304 DOI: 10.3389/fmolb.2021.644133] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 05/14/2021] [Indexed: 12/31/2022] Open
Abstract
JCVI-syn3A is a genetically minimal bacterial cell, consisting of 493 genes and only a single 543 kbp circular chromosome. Syn3A’s genome and physical size are approximately one-tenth those of the model bacterial organism Escherichia coli’s, and the corresponding reduction in complexity and scale provides a unique opportunity for whole-cell modeling. Previous work established genome-scale gene essentiality and proteomics data along with its essential metabolic network and a kinetic model of genetic information processing. In addition to that information, whole-cell, spatially-resolved kinetic models require cellular architecture, including spatial distributions of ribosomes and the circular chromosome’s configuration. We reconstruct cellular architectures of Syn3A cells at the single-cell level directly from cryo-electron tomograms, including the ribosome distributions. We present a method of generating self-avoiding circular chromosome configurations in a lattice model with a resolution of 11.8 bp per monomer on a 4 nm cubic lattice. Realizations of the chromosome configurations are constrained by the ribosomes and geometry reconstructed from the tomograms and include DNA loops suggested by experimental chromosome conformation capture (3C) maps. Using ensembles of simulated chromosome configurations we predict chromosome contact maps for Syn3A cells at resolutions of 250 bp and greater and compare them to the experimental maps. Additionally, the spatial distributions of ribosomes and the DNA-crowding resulting from the individual chromosome configurations can be used to identify macromolecular structures formed from ribosomes and DNA, such as polysomes and expressomes.
Collapse
Affiliation(s)
- Benjamin R Gilbert
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Zane R Thornburg
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Vinson Lam
- Division of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Fatema-Zahra M Rashid
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands.,Center for Microbial Cell Biology, Leiden University, Leiden, Netherlands
| | - John I Glass
- Synthetic Biology Group, J. Craig Venter Institute, La Jolla, CA, United States
| | - Elizabeth Villa
- Division of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Remus T Dame
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands.,Center for Microbial Cell Biology, Leiden University, Leiden, Netherlands
| | - Zaida Luthey-Schulten
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
14
|
Agmon E, Spangler RK. A Multi-Scale Approach to Modeling E. coli Chemotaxis. ENTROPY 2020; 22:e22101101. [PMID: 33286869 PMCID: PMC7597207 DOI: 10.3390/e22101101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/25/2022]
Abstract
The degree to which we can understand the multi-scale organization of cellular life is tied to how well our models can represent this organization and the processes that drive its evolution. This paper uses Vivarium-an engine for composing heterogeneous computational biology models into integrated, multi-scale simulations. Vivarium's approach is demonstrated by combining several sub-models of biophysical processes into a model of chemotactic E. coli that exchange molecules with their environment, express the genes required for chemotaxis, swim, grow, and divide. This model is developed incrementally, highlighting cross-compartment mechanisms that link E. coli to its environment, with models for: (1) metabolism and transport, with transport moving nutrients across the membrane boundary and metabolism converting them to useful metabolites, (2) transcription, translation, complexation, and degradation, with stochastic mechanisms that read real gene sequence data and consume base pairs and ATP to make proteins and complexes, and (3) the activity of flagella and chemoreceptors, which together support navigation in the environment.
Collapse
|