1
|
Drápela S, Kvokačková B, Slabáková E, Kotrbová A, Gömöryová K, Fedr R, Kurfürstová D, Eliáš M, Študent V, Lenčéšová F, Ranjani GS, Pospíchalová V, Bryja V, van Weerden WM, Puhr M, Culig Z, Bouchal J, Souček K. Pre-existing cell subpopulations in primary prostate cancer tumors display surface fingerprints of docetaxel-resistant cells. Cell Oncol (Dordr) 2025; 48:205-218. [PMID: 39162992 PMCID: PMC11850551 DOI: 10.1007/s13402-024-00982-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2024] [Indexed: 08/21/2024] Open
Abstract
PURPOSE Docetaxel resistance is a significant obstacle in the treatment of prostate cancer (PCa), resulting in unfavorable patient prognoses. Intratumoral heterogeneity, often associated with epithelial-to-mesenchymal transition (EMT), has previously emerged as a phenomenon that facilitates adaptation to various stimuli, thus promoting cancer cell diversity and eventually resistance to chemotherapy, including docetaxel. Hence, understanding intratumoral heterogeneity is essential for better patient prognosis and the development of personalized treatment strategies. METHODS To address this, we employed a high-throughput single-cell flow cytometry approach to identify a specific surface fingerprint associated with docetaxel-resistance in PCa cells and complemented it with proteomic analysis of extracellular vesicles. We further validated selected antigens using docetaxel-resistant patient-derived xenografts in vivo and probed primary PCa specimens to interrogate of their surface fingerprint. RESULTS Our approaches revealed a 6-molecule surface fingerprint linked to docetaxel resistance in primary PCa specimens. We observed consistent overexpression of CD95 (FAS/APO-1), and SSEA-4 surface antigens in both in vitro and in vivo docetaxel-resistant models, which was also observed in a cell subpopulation of primary PCa tumors exhibiting EMT features. Furthermore, CD95, along with the essential enzymes involved in SSEA-4 synthesis, ST3GAL1, and ST3GAL2, displayed a significant increase in patients with PCa undergoing docetaxel-based therapy, correlating with poor survival outcomes. CONCLUSION In summary, we demonstrate that the identified 6-molecule surface fingerprint associated with docetaxel resistance pre-exists in a subpopulation of primary PCa tumors before docetaxel treatment. Thus, this fingerprint warrants further validation as a promising predictive tool for docetaxel resistance in PCa patients prior to therapy initiation.
Collapse
Affiliation(s)
- Stanislav Drápela
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno, 612 00, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital in Brno, Brno, 602 00, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 625 00, Czech Republic
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, FL, 33612, Tampa, USA
| | - Barbora Kvokačková
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno, 612 00, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital in Brno, Brno, 602 00, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 625 00, Czech Republic
| | - Eva Slabáková
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno, 612 00, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 625 00, Czech Republic
| | - Anna Kotrbová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 625 00, Czech Republic
| | - Kristína Gömöryová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 625 00, Czech Republic
| | - Radek Fedr
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno, 612 00, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital in Brno, Brno, 602 00, Czech Republic
| | - Daniela Kurfürstová
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, 779 00, Czech Republic
| | - Martin Eliáš
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, 779 00, Czech Republic
| | - Vladimír Študent
- Department of Urology, University Hospital Olomouc, Olomouc, 779 00, Czech Republic
| | - Frederika Lenčéšová
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, 779 00, Czech Republic
| | - Ganji Sri Ranjani
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Vendula Pospíchalová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 625 00, Czech Republic
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 625 00, Czech Republic
| | - Wytske M van Weerden
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Wytemaweg 80, Rotterdam, 3015 CN, The Netherlands
| | - Martin Puhr
- Department of Urology, Experimental Urology, Medical University of Innsbruck, Anich Strasse 35, Innsbruck, A-6020, Austria
| | - Zoran Culig
- International Clinical Research Center, St. Anne's University Hospital in Brno, Brno, 602 00, Czech Republic
- Department of Urology, Experimental Urology, Medical University of Innsbruck, Anich Strasse 35, Innsbruck, A-6020, Austria
| | - Jan Bouchal
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, 779 00, Czech Republic
| | - Karel Souček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno, 612 00, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital in Brno, Brno, 602 00, Czech Republic.
| |
Collapse
|
2
|
Alimudin J, Betts Z, Ozkan AD. Natural Compounds and Histone Deacetylase Inhibitors: A Combined Approach Against mCRPC Cells. Biomedicines 2025; 13:296. [PMID: 40002709 PMCID: PMC11853668 DOI: 10.3390/biomedicines13020296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Sodium butyrate (NaBu), a short-chain fatty acid, modulates global gene expression through histone deacetylase (HDAC) inhibition, suppressing proliferation and inducing apoptosis in various cancers. Rutin (RUT), a polyphenolic flavonoid found in many plants, exhibits notable anticancer properties. Combining chemotherapeutic agents with natural polyphenols represents a promising strategy for cancer therapy. This study aims to evaluate, for the first time, the potential effects of NaBu and RUT combination therapy on metastatic castration-resistant prostate cancer (mCRPC) cells. Methods: PC-3 cells were treated with varying concentrations of NaBu, RUT, and their combinations. Cell viability was assessed using the WST-1 assay. Based on combination index values, selected treatments were further analyzed for apoptosis (Annexin V assay), intracellular reactive oxygen species (ROS) production, mRNA expression levels, and changes in cell and nuclear morphology. Results: The combined treatment of NaBu and RUT significantly reduced cell viability compared to individual treatments. Enhanced apoptotic induction and elevated ROS levels were observed in combination-treated cells, alongside notable changes in cellular and nuclear morphology and mRNA expression levels. Conclusions: NaBu and RUT combination therapy exhibits a synergistic anticancer effect in mCRPC cells by inhibiting cell viability, inducing apoptosis, and increasing ROS production. These findings suggest a promising therapeutic approach that warrants further investigation to elucidate the underlying molecular mechanisms and assess its potential in preclinical and clinical settings.
Collapse
Affiliation(s)
- Janiah Alimudin
- Department of Biology, Institute of Science, Kocaeli University, Kocaeli 41001, Türkiye;
| | - Zeynep Betts
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Menchester M1 7DN, UK;
- Department of Biology, Faculty of Science and Art, Kocaeli University, Kocaeli 41001, Türkiye
| | - Asuman Deveci Ozkan
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya 54290, Türkiye
| |
Collapse
|
3
|
Wang JM, Zhang FH, Liu ZX, Tang YJ, Li JF, Xie LP. Cancer on motors: How kinesins drive prostate cancer progression? Biochem Pharmacol 2024; 224:116229. [PMID: 38643904 DOI: 10.1016/j.bcp.2024.116229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/02/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Prostate cancer causes numerous male deaths annually. Although great progress has been made in the diagnosis and treatment of prostate cancer during the past several decades, much about this disease remains unknown, especially its pathobiology. The kinesin superfamily is a pivotal group of motor proteins, that contains a microtubule-based motor domain and features an adenosine triphosphatase activity and motility characteristics. Large-scale sequencing analyses based on clinical samples and animal models have shown that several members of the kinesin family are dysregulated in prostate cancer. Abnormal expression of kinesins could be linked to uncontrolled cell growth, inhibited apoptosis and increased metastasis ability. Additionally, kinesins may be implicated in chemotherapy resistance and escape immunologic cytotoxicity, which creates a barrier to cancer treatment. Here we cover the recent advances in understanding how kinesins may drive prostate cancer progression and how targeting their function may be a therapeutic strategy. A better understanding of kinesins in prostate cancer tumorigenesis may be pivotal for improving disease outcomes in prostate cancer patients.
Collapse
Affiliation(s)
- Jia-Ming Wang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Feng-Hao Zhang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Zi-Xiang Liu
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, People's Republic of China
| | - Yi-Jie Tang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jiang-Feng Li
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| | - Li-Ping Xie
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| |
Collapse
|
4
|
Stracker TH, Osagie OI, Escorcia FE, Citrin DE. Exploiting the DNA Damage Response for Prostate Cancer Therapy. Cancers (Basel) 2023; 16:83. [PMID: 38201511 PMCID: PMC10777950 DOI: 10.3390/cancers16010083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Prostate cancers that progress despite androgen deprivation develop into castration-resistant prostate cancer, a fatal disease with few treatment options. In this review, we discuss the current understanding of prostate cancer subtypes and alterations in the DNA damage response (DDR) that can predispose to the development of prostate cancer and affect its progression. We identify barriers to conventional treatments, such as radiotherapy, and discuss the development of new therapies, many of which target the DDR or take advantage of recurring genetic alterations in the DDR. We place this in the context of advances in understanding the genetic variation and immune landscape of CRPC that could help guide their use in future treatment strategies. Finally, we discuss several new and emerging agents that may advance the treatment of lethal disease, highlighting selected clinical trials.
Collapse
Affiliation(s)
- Travis H. Stracker
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
| | - Oloruntoba I. Osagie
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
| | - Freddy E. Escorcia
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Deborah E. Citrin
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
| |
Collapse
|
5
|
Rather HA, Almousa S, Kumar A, Sharma M, Pennington I, Kim S, Su Y, He Y, Ghara AR, Sai KKS, Navone NM, Vander Griend DJ, Deep G. The β-Secretase 1 Enzyme as a Novel Therapeutic Target for Prostate Cancer. Cancers (Basel) 2023; 16:10. [PMID: 38201438 PMCID: PMC10778021 DOI: 10.3390/cancers16010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024] Open
Abstract
Recent studies have demonstrated the association of APP and Aβ with cancer, suggesting that BACE1 may play an important role in carcinogenesis. In the present study, we assessed BACE1's usefulness as a therapeutic target in prostate cancer (PCa). BACE1 expression was observed in human PCa tissue samples, patient-derived xenografts (PDX), human PCa xenograft tissue in nude mice, and transgenic adenocarcinoma of the mouse prostate (TRAMP) tissues by immunohistochemistry (IHC) analysis. Additionally, the downstream product of BACE1 activity, i.e., Aβ1-42 expression, was also observed in these PCa tissues by IHC as well as by PET imaging in TRAMP mice. Furthermore, BACE1 gene expression and activity was confirmed in several established PCa cell lines (LNCaP, C4-2B-enzalutamide sensitive [S], C4-2B-enzalutamide resistant [R], 22Rv1-S, 22Rv1-R, PC3, DU145, and TRAMP-C1) by real-time PCR and fluorometric assay, respectively. Treatment with a pharmacological inhibitor of BACE1 (MK-8931) strongly reduced the proliferation of PCa cells in in vitro and in vivo models, analyzed by multiple assays (MTT, clonogenic, and trypan blue exclusion assays and IHC). Cell cycle analyses revealed an increase in the sub-G1 population and a significant modulation in other cell cycle stages (G1/S/G2/M) following MK-8931 treatment. Most importantly, in vivo administration of MK-8931 intraperitoneal (30 mg/kg) strongly inhibited TRAMP-C1 allograft growth in immunocompetent C57BL/6 mice (approximately 81% decrease, p = 0.019). Furthermore, analysis of tumor tissue using the prostate cancer-specific pathway array revealed the alteration of several genes involved in PCa growth and progression including Forkhead O1 (FOXO1). All together, these findings suggest BACE1 as a novel therapeutic target in advanced PCa.
Collapse
Affiliation(s)
- Hilal A. Rather
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (H.A.R.); (S.A.); (A.K.); (M.S.); (I.P.); (S.K.); (Y.S.); (Y.H.); (A.R.G.)
| | - Sameh Almousa
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (H.A.R.); (S.A.); (A.K.); (M.S.); (I.P.); (S.K.); (Y.S.); (Y.H.); (A.R.G.)
| | - Ashish Kumar
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (H.A.R.); (S.A.); (A.K.); (M.S.); (I.P.); (S.K.); (Y.S.); (Y.H.); (A.R.G.)
| | - Mitu Sharma
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (H.A.R.); (S.A.); (A.K.); (M.S.); (I.P.); (S.K.); (Y.S.); (Y.H.); (A.R.G.)
| | - Isabel Pennington
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (H.A.R.); (S.A.); (A.K.); (M.S.); (I.P.); (S.K.); (Y.S.); (Y.H.); (A.R.G.)
| | - Susy Kim
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (H.A.R.); (S.A.); (A.K.); (M.S.); (I.P.); (S.K.); (Y.S.); (Y.H.); (A.R.G.)
| | - Yixin Su
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (H.A.R.); (S.A.); (A.K.); (M.S.); (I.P.); (S.K.); (Y.S.); (Y.H.); (A.R.G.)
| | - Yangen He
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (H.A.R.); (S.A.); (A.K.); (M.S.); (I.P.); (S.K.); (Y.S.); (Y.H.); (A.R.G.)
| | - Abdollah R. Ghara
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (H.A.R.); (S.A.); (A.K.); (M.S.); (I.P.); (S.K.); (Y.S.); (Y.H.); (A.R.G.)
| | - Kiran Kumar Solingapuram Sai
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Nora M. Navone
- Department of Genitourinary Medical Oncology, David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | | | - Gagan Deep
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (H.A.R.); (S.A.); (A.K.); (M.S.); (I.P.); (S.K.); (Y.S.); (Y.H.); (A.R.G.)
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
6
|
Zhu W, Zeng H, Huang J, Wu J, Wang Y, Wang Z, Wang H, Luo Y, Lai W. Integrated machine learning identifies epithelial cell marker genes for improving outcomes and immunotherapy in prostate cancer. J Transl Med 2023; 21:782. [PMID: 37925432 PMCID: PMC10625713 DOI: 10.1186/s12967-023-04633-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/14/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa), a globally prevalent malignancy, displays intricate heterogeneity within its epithelial cells, closely linked with disease progression and immune modulation. However, the clinical significance of genes and biomarkers associated with these cells remains inadequately explored. To address this gap, this study aimed to comprehensively investigate the roles and clinical value of epithelial cell-related genes in PCa. METHODS Leveraging single-cell sequencing data from GSE176031, we conducted an extensive analysis to identify epithelial cell marker genes (ECMGs). Employing consensus clustering analysis, we evaluated the correlations between ECMGs, prognosis, and immune responses in PCa. Subsequently, we developed and validated an optimal prognostic signature, termed the epithelial cell marker gene prognostic signature (ECMGPS), through synergistic analysis from 101 models employing 10 machine learning algorithms across five independent cohorts. Additionally, we collected clinical features and previously published signatures from the literature for comparative analysis. Furthermore, we explored the clinical utility of ECMGPS in immunotherapy and drug selection using multi-omics analysis and the IMvigor cohort. Finally, we investigated the biological functions of the hub gene, transmembrane p24 trafficking protein 3 (TMED3), in PCa using public databases and experiments. RESULTS We identified a comprehensive set of 543 ECMGs and established a strong correlation between ECMGs and both the prognostic evaluation and immune classification in PCa. Notably, ECMGPS exhibited robust predictive capability, surpassing traditional clinical features and 80 published signatures in terms of both independence and accuracy across five cohorts. Significantly, ECMGPS demonstrated significant promise in identifying potential PCa patients who might benefit from immunotherapy and personalized medicine, thereby moving us nearer to tailored therapeutic approaches for individuals. Moreover, the role of TMED3 in promoting malignant proliferation of PCa cells was validated. CONCLUSIONS Our findings highlight ECMGPS as a powerful tool for improving PCa patient outcomes and supply a robust conceptual framework for in-depth examination of PCa complexities. Simultaneously, our study has the potential to develop a novel alternative for PCa diagnosis and prognostication.
Collapse
Affiliation(s)
- Weian Zhu
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Hengda Zeng
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Jiongduan Huang
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Jianjie Wu
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Yu Wang
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Ziqiao Wang
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Hua Wang
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Yun Luo
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510630, People's Republic of China.
| | - Wenjie Lai
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510630, People's Republic of China.
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510630, People's Republic of China.
| |
Collapse
|
7
|
Silvestri R, Nicolì V, Gangadharannambiar P, Crea F, Bootman MD. Calcium signalling pathways in prostate cancer initiation and progression. Nat Rev Urol 2023; 20:524-543. [PMID: 36964408 DOI: 10.1038/s41585-023-00738-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 03/26/2023]
Abstract
Cancer cells proliferate, differentiate and migrate by repurposing physiological signalling mechanisms. In particular, altered calcium signalling is emerging as one of the most widespread adaptations in cancer cells. Remodelling of calcium signalling promotes the development of several malignancies, including prostate cancer. Gene expression data from in vitro, in vivo and bioinformatics studies using patient samples and xenografts have shown considerable changes in the expression of various components of the calcium signalling toolkit during the development of prostate cancer. Moreover, preclinical and clinical evidence suggests that altered calcium signalling is a crucial component of the molecular re-programming that drives prostate cancer progression. Evidence points to calcium signalling re-modelling, commonly involving crosstalk between calcium and other cellular signalling pathways, underpinning the onset and temporal progression of this disease. Discrete alterations in calcium signalling have been implicated in hormone-sensitive, castration-resistant and aggressive variant forms of prostate cancer. Hence, modulation of calcium signals and downstream effector molecules is a plausible therapeutic strategy for both early and late stages of prostate cancer. Based on this premise, clinical trials have been undertaken to establish the feasibility of targeting calcium signalling specifically for prostate cancer.
Collapse
Affiliation(s)
| | - Vanessa Nicolì
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | | | - Francesco Crea
- Cancer Research Group, School of Life Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Martin D Bootman
- Cancer Research Group, School of Life Health and Chemical Sciences, The Open University, Milton Keynes, UK.
| |
Collapse
|
8
|
Naderinezhad S, Zhang G, Wang Z, Zheng D, Hulsurkar M, Bakhoum M, Su N, Yang H, Shen T, Li W. A novel GRK3-HDAC2 regulatory pathway is a key direct link between neuroendocrine differentiation and angiogenesis in prostate cancer progression. Cancer Lett 2023; 571:216333. [PMID: 37543278 PMCID: PMC11235056 DOI: 10.1016/j.canlet.2023.216333] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
The mechanisms underlying the progression of prostate cancer (PCa) to neuroendocrine prostate cancer (NEPC), an aggressive PCa variant, are largely unclear. Two prominent NEPC phenotypes are elevated NE marker expression and heightened angiogenesis. Identifying the still elusive direct molecular links connecting angiogenesis and neuroendocrine differentiation (NED) is crucial for our understanding and targeting of NEPC. Here we found that histone deacetylase 2 (HDAC2), whose role in NEPC has not been reported, is one of the most upregulated epigenetic regulators in NEPC. HDAC2 promotes both NED and angiogenesis. G protein-coupled receptor kinase 3 (GRK3), also upregulated in NEPC, is a critical promoter for both phenotypes too. Of note, GRK3 phosphorylates HDAC2 at S394, which enhances HDAC2's epigenetic repression of potent anti-angiogenic factor Thrombospondin 1 (TSP1) and master NE-repressor RE1 Silencing Transcription Factor (REST). Intriguingly, REST suppresses angiogenesis while TSP1 suppresses NE marker expression in PCa cells, indicative of their novel functions and their synergy in cross-repressing the two phenotypes. Furthermore, the GRK3-HDAC2 pathway is activated by androgen deprivation therapy and hypoxia, both known to promote NED and angiogenesis in PCa. These results indicate that NED and angiogenesis converge on GRK3-enhanced HDAC2 suppression of REST and TSP1, which constitutes a key missing link between two prominent phenotypes of NEPC.
Collapse
Affiliation(s)
- Samira Naderinezhad
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA; University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Guoliang Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zheng Wang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dayong Zheng
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mohit Hulsurkar
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA; University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Michael Bakhoum
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ning Su
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Han Yang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Tao Shen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Wenliang Li
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA; University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
9
|
Dahut M, Fousek K, Horn LA, Angstadt S, Qin H, Hamilton DH, Schlom J, Palena C. Fulvestrant increases the susceptibility of enzalutamide-resistant prostate cancer cells to NK-mediated lysis. J Immunother Cancer 2023; 11:e007386. [PMID: 37678915 PMCID: PMC10496692 DOI: 10.1136/jitc-2023-007386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Enzalutamide, a next-generation antiandrogen agent, is approved for the treatment of metastatic castration-resistant prostate cancer (CRPC). While enzalutamide has been shown to improve time to progression and extend overall survival in men with CRPC, the majority of patients ultimately develop resistance to treatment. Immunotherapy approaches have shown limited clinical benefit in this patient population; understanding resistance mechanisms could help develop novel and more effective treatments for CRPC. One of the mechanisms involved in tumor resistance to various therapeutics is tumor phenotypic plasticity, whereby carcinoma cells acquire mesenchymal features with or without the loss of classical epithelial characteristics. This work investigated a potential link between enzalutamide resistance, tumor phenotypic plasticity, and resistance to immune-mediated lysis in prostate cancer. METHODS Models of prostate cancer resistant to enzalutamide were established by long-term exposure of human prostate cancer cell lines to the drug in culture. Tumor cells were evaluated for phenotypic features in vitro and in vivo, as well as for sensitivity to immune effector cell-mediated cytotoxicity. RESULTS Resistance to enzalutamide was associated with gain of mesenchymal tumor features, upregulation of estrogen receptor expression, and significantly reduced tumor susceptibility to natural killer (NK)-mediated lysis, an effect that was associated with decreased tumor/NK cell conjugate formation with enzalutamide-resistant cells. Fulvestrant, a selective estrogen receptor degrader, restored the formation of target/NK cell conjugates and increased susceptibility to NK cell lysis in vitro. In vivo, fulvestrant demonstrated antitumor activity against enzalutamide-resistant cells, an effect that was associated with activation of NK cells. CONCLUSION NK cells are emerging as a promising therapeutic approach in prostate cancer. Modifying tumor plasticity via blockade of estrogen receptor with fulvestrant may offer an opportunity for immune intervention via NK cell-based approaches in enzalutamide-resistant CRPC.
Collapse
Affiliation(s)
- Madeline Dahut
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Kristen Fousek
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Lucas A Horn
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Shantel Angstadt
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Haiyan Qin
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Duane H Hamilton
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Jeffrey Schlom
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Claudia Palena
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
10
|
Nie J, Zhang P, Liang C, Yu Y, Wang X. ASCL1-mediated ferroptosis resistance enhances the progress of castration-resistant prostate cancer to neurosecretory prostate cancer. Free Radic Biol Med 2023; 205:318-331. [PMID: 37355053 DOI: 10.1016/j.freeradbiomed.2023.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/26/2023]
Abstract
Neuroendocrine prostate cancer (NEPC) is a multi-resistant variant of prostate cancer (PCa) that frequently emerges in castration-resistant prostate cancer (CRPC). NEPC is usually associated with tumor aggression, hormone therapy resistance, and poor clinical outcome. However, the mechanisms underlying the trans-differentiation from CRPC to NEPC have not been elucidated. Achaete-scute complex-like 1 (ASCL1) plays a role in neuronal commitment and differentiation and olfactory and autonomic neuron generation. This study revealed that ASCL1 was regulated by the SRY-box transcription factor 2 (SOX2) and highly expressed in NEPC cells, which was closely related to poor prognosis. Moreover, ASCL1 overexpression significantly enhanced CRPC progression to NEPC by resisting ferroptosis. Mechanically, ferroptosis resistance was mediated by CAMP-responsive element binding protein 1 (CREB1) phosphorylation, promoted by substantially upregulated ASCL1 in NEPC cells. In addition, upregulated SOX2 induced PCa cell differentiation into neuroendocrine tumors by mediating their lineage changes. In conclusion, inhibiting the ferroptosis resistance mediated by ASCL1 could provide a new NEPC therapeutic target and increase patient survival.
Collapse
Affiliation(s)
- Jiawei Nie
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China
| | - Peng Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China.
| | - Chaoqi Liang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China
| | - Ying Yu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Cancer Precision Diagnosis and Treatment and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China.
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Cancer Precision Diagnosis and Treatment and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Research Center of Wuhan for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, PR China.
| |
Collapse
|
11
|
Verma P, Shukla N, Kumari S, Ansari M, Gautam NK, Patel GK. Cancer stem cell in prostate cancer progression, metastasis and therapy resistance. Biochim Biophys Acta Rev Cancer 2023; 1878:188887. [PMID: 36997008 DOI: 10.1016/j.bbcan.2023.188887] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/18/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
Prostate cancer (PCa) is the most diagnosed malignancy in the men worldwide. Cancer stem cells (CSCs) are the sub-population of cells present in the tumor which possess unique properties of self-renewal and multilineage differentiation thus thought to be major cause of therapy resistance, disease relapse, and mortality in several malignancies including PCa. CSCs have also been shown positive for the common stem cells markers such as ALDH EZH2, OCT4, SOX2, c-MYC, Nanog etc. Therefore, isolation and characterization of CSCs specific markers which may discriminate CSCs and normal stem cells are critical to selectively eliminate CSCs. Rapid advances in the field offers a theoretical explanation for many of the enduring uncertainties encompassing the etiology and an optimism for the identification of new stem-cell targets, development of reliable and efficient therapies in the future. The emerging reports have also provided unprecedented insights into CSCs plasticity, quiescence, renewal, and therapeutic response. In this review, we discuss the identification of PCa stem cells, their unique properties, stemness-driving pathways, new diagnostics, and therapeutic interventions.
Collapse
|
12
|
Manzar N, Ganguly P, Khan UK, Ateeq B. Transcription networks rewire gene repertoire to coordinate cellular reprograming in prostate cancer. Semin Cancer Biol 2023; 89:76-91. [PMID: 36702449 DOI: 10.1016/j.semcancer.2023.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023]
Abstract
Transcription factors (TFs) represent the most commonly deregulated DNA-binding class of proteins associated with multiple human cancers. They can act as transcriptional activators or repressors that rewire the cistrome, resulting in cellular reprogramming during cancer progression. Deregulation of TFs is associated with the onset and maintenance of various cancer types including prostate cancer. An emerging subset of TFs has been implicated in the regulation of multiple cancer hallmarks during tumorigenesis. Here, we discuss the role of key TFs which modulate transcriptional cicuitries involved in the development and progression of prostate cancer. We further highlight the role of TFs associated with key cancer hallmarks, including, chromatin remodeling, genome instability, DNA repair, invasion, and metastasis. We also discuss the pluripotent function of TFs in conferring lineage plasticity, that aids in disease progression to neuroendocrine prostate cancer. At the end, we summarize the current understanding and approaches employed for the therapeutic targeting of TFs and their cofactors in the clinical setups to prevent disease progression.
Collapse
Affiliation(s)
- Nishat Manzar
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Promit Ganguly
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Umar Khalid Khan
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Bushra Ateeq
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| |
Collapse
|
13
|
Baldelli E, Mandarano M, Bellezza G, Petricoin EF, Pierobon M. Analysis of neuroendocrine clones in NSCLCs using an immuno-guided laser-capture microdissection-based approach. CELL REPORTS METHODS 2022; 2:100271. [PMID: 36046628 PMCID: PMC9421534 DOI: 10.1016/j.crmeth.2022.100271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/03/2022] [Accepted: 07/21/2022] [Indexed: 11/30/2022]
Abstract
Clonal evolution and lineage plasticity are key contributors to tumor heterogeneity and response to treatment in cancer. However, capturing signal transduction events in coexisting clones remains challenging from a technical perspective. In this study, we developed and tested a signal-transduction-based workflow to isolate and profile coexisting clones within a complex cellular system like non-small cell lung cancers (NSCLCs). Cooccurring clones were isolated under immunohistochemical guidance using laser-capture microdissection, and cell signaling activation portraits were measured using the reverse-phase protein microarray. To increase the translational potential of this work and capture druggable vulnerabilities within different clones, we measured expression/activation of a panel of key drug targets and downstream substrates of FDA-approved or investigational agents. We isolated intermixed clones, including poorly represented ones (<5% of cells), within the tumor microecology and identified molecular characteristics uniquely attributable to cancer cells that undergo lineage plasticity and neuroendocrine transdifferentiation in NSCLCs.
Collapse
Affiliation(s)
- Elisa Baldelli
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Martina Mandarano
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
- Department of Medicine and Surgery, Section of Anatomic Pathology and Histology, University of Perugia, Perugia, Italy
| | - Guido Bellezza
- Department of Medicine and Surgery, Section of Anatomic Pathology and Histology, University of Perugia, Perugia, Italy
| | - Emanuel F. Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
- School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
- School of Systems Biology, George Mason University, Manassas, VA, USA
| |
Collapse
|
14
|
Storck WK, May AM, Westbrook TC, Duan Z, Morrissey C, Yates JA, Alumkal JJ. The Role of Epigenetic Change in Therapy-Induced Neuroendocrine Prostate Cancer Lineage Plasticity. Front Endocrinol (Lausanne) 2022; 13:926585. [PMID: 35909568 PMCID: PMC9329809 DOI: 10.3389/fendo.2022.926585] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/19/2022] [Indexed: 11/23/2022] Open
Abstract
The androgen receptor (AR) signaling pathway is critical for growth and differentiation of prostate cancer cells. For that reason, androgen deprivation therapy with medical or surgical castration is the principal treatment for metastatic prostate cancer. More recently, new potent AR signaling inhibitors (ARSIs) have been developed. These drugs improve survival for men with metastatic castration-resistant prostate cancer (CRPC), the lethal form of the disease. However, ARSI resistance is nearly universal. One recently appreciated resistance mechanism is lineage plasticity or switch from an AR-driven, luminal differentiation program to an alternate differentiation program. Importantly, lineage plasticity appears to be increasing in incidence in the era of new ARSIs, strongly implicating AR suppression in this process. Lineage plasticity and shift from AR-driven tumors occur on a continuum, ranging from AR-expressing tumors with low AR activity to AR-null tumors that have activation of alternate differentiation programs versus the canonical luminal program found in AR-driven tumors. In many cases, AR loss coincides with the activation of a neuronal program, most commonly exemplified as therapy-induced neuroendocrine prostate cancer (t-NEPC). While genetic events clearly contribute to prostate cancer lineage plasticity, it is also clear that epigenetic events-including chromatin modifications and DNA methylation-play a major role. Many epigenetic factors are now targetable with drugs, establishing the importance of clarifying critical epigenetic factors that promote lineage plasticity. Furthermore, epigenetic marks are readily measurable, demonstrating the importance of clarifying which measurements will help to identify tumors that have undergone or are at risk of undergoing lineage plasticity. In this review, we discuss the role of AR pathway loss and activation of a neuronal differentiation program as key contributors to t-NEPC lineage plasticity. We also discuss new epigenetic therapeutic strategies to reverse lineage plasticity, including those that have recently entered clinical trials.
Collapse
Affiliation(s)
- William K. Storck
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Allison M. May
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
- Department of Urology, University of Michigan, Ann Arbor, MI, United States
| | - Thomas C. Westbrook
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Zhi Duan
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA, United States
| | - Joel A. Yates
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Joshi J. Alumkal
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
15
|
Mucinous metaplasia in Pten conditional knockout mice and mucin family genes as prognostic markers for prostate cancer. Life Sci 2022; 293:120264. [PMID: 35031262 DOI: 10.1016/j.lfs.2021.120264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/11/2021] [Accepted: 12/19/2021] [Indexed: 12/24/2022]
Abstract
AIMS This study evaluated the association of mucinous metaplasia (MM) with tumor cell proliferation, androgen receptor (AR) expression and invasiveness in Pten conditional knockout mice and the prognostic value of MM markers for patients with PCa. MAIN METHODS Prostatic lobes samples from genetic engineered mouse model Ptenf/f and Pb-Cre4/Ptenf/f were submitted for histopathological analysis and tissue expression of AR, the proliferation marker Ki67, alpha-smooth muscle actin, and laminin. RNAseq data of prostatic lobes samples were analyzed searching for MM gene expression patterns. We also investigated gene and protein expression related to MM in human PCa public databases. KEY FINDINGS All knockout animals analyzed showed at least one area of stroma-invading MM, which was absent in the control animals. The tumoral regions of MM showed a proliferative index 5 times higher than other tumoral areas and low expression of the AR (less than 20% of the cells were AR-positive). Disrupted basement membrane areas were observed in MM. The mouse and human PCa transcriptomes exhibited increased expression of the MM markers such as MUC1, MUC19, MUC4, MUC5AC, MUC5B, and TFF3. Gene expression profile was associated with castration-resistant prostate cancer (CRPC) and with a lower probability of freedom from biochemical recurrence. SIGNIFICANCE The expression of goblet cell genes, such as MUC1, MUC5AC, MUC5B, and TFF3 have significant prognostic value for PCa patients and represent another class of potential therapeutic targets.
Collapse
|
16
|
Song H, Weinstein HNW, Allegakoen P, Wadsworth MH, Xie J, Yang H, Castro EA, Lu KL, Stohr BA, Feng FY, Carroll PR, Wang B, Cooperberg MR, Shalek AK, Huang FW. Single-cell analysis of human primary prostate cancer reveals the heterogeneity of tumor-associated epithelial cell states. Nat Commun 2022; 13:141. [PMID: 35013146 PMCID: PMC8748675 DOI: 10.1038/s41467-021-27322-4] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 10/29/2021] [Indexed: 12/31/2022] Open
Abstract
Prostate cancer is the second most common malignancy in men worldwide and consists of a mixture of tumor and non-tumor cell types. To characterize the prostate cancer tumor microenvironment, we perform single-cell RNA-sequencing on prostate biopsies, prostatectomy specimens, and patient-derived organoids from localized prostate cancer patients. We uncover heterogeneous cellular states in prostate epithelial cells marked by high androgen signaling states that are enriched in prostate cancer and identify a population of tumor-associated club cells that may be associated with prostate carcinogenesis. ERG-negative tumor cells, compared to ERG-positive cells, demonstrate shared heterogeneity with surrounding luminal epithelial cells and appear to give rise to common tumor microenvironment responses. Finally, we show that prostate epithelial organoids harbor tumor-associated epithelial cell states and are enriched with distinct cell types and states from their parent tissues. Our results provide diagnostically relevant insights and advance our understanding of the cellular states associated with prostate carcinogenesis.
Collapse
Affiliation(s)
- Hanbing Song
- grid.266102.10000 0001 2297 6811Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Hannah N. W. Weinstein
- grid.266102.10000 0001 2297 6811Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Paul Allegakoen
- grid.266102.10000 0001 2297 6811Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Marc H. Wadsworth
- grid.116068.80000 0001 2341 2786The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.66859.340000 0004 0546 1623Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142 USA
| | - Jamie Xie
- grid.266102.10000 0001 2297 6811Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Heiko Yang
- grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Department of Urology, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Ethan A. Castro
- grid.266102.10000 0001 2297 6811Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Kevin L. Lu
- grid.266102.10000 0001 2297 6811Department of Pathology, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Bradley A. Stohr
- grid.266102.10000 0001 2297 6811Department of Pathology, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Felix Y. Feng
- grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Department of Urology, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Departments of Radiation Oncology, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Peter R. Carroll
- grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Department of Urology, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Bruce Wang
- grid.266102.10000 0001 2297 6811Division of Gastroenterology, Department of Medicine, University of California, San Francisco, CA 94143 USA
| | - Matthew R. Cooperberg
- grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Department of Urology, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.410372.30000 0004 0419 2775Division of Hematology and Oncology, Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121 USA
| | - Alex K. Shalek
- grid.116068.80000 0001 2341 2786The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.66859.340000 0004 0546 1623Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142 USA
| | - Franklin W. Huang
- grid.266102.10000 0001 2297 6811Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.410372.30000 0004 0419 2775Division of Hematology and Oncology, Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121 USA
| |
Collapse
|
17
|
Flores-Téllez TDNJ, Baena E. Experimental challenges to modeling prostate cancer heterogeneity. Cancer Lett 2022; 524:194-205. [PMID: 34688843 DOI: 10.1016/j.canlet.2021.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/23/2021] [Accepted: 10/09/2021] [Indexed: 12/24/2022]
Abstract
Tumor heterogeneity plays a key role in prostate cancer prognosis, therapy selection, relapse, and acquisition of treatment resistance. Prostate cancer presents a heterogeneous diversity at inter- and intra-tumor and inter-patient levels which are influenced by multiple intrinsic and/or extrinsic factors. Recent studies have started to characterize the complexity of prostate tumors and these different tiers of heterogeneity. In this review, we discuss the most common factors that contribute to tumoral diversity. Moreover, we focus on the description of the in vitro and in vivo approaches, as well as high-throughput technologies, that help to model intra-tumoral diversity. Further understanding tumor heterogeneities and the challenges they present will guide enhanced patient risk stratification, aid the design of more precise therapies, and ultimately help beat this chameleon-like disease.
Collapse
Affiliation(s)
- Teresita Del N J Flores-Téllez
- Prostate Oncobiology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield, SK10 4TG, UK
| | - Esther Baena
- Prostate Oncobiology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield, SK10 4TG, UK; Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG, UK.
| |
Collapse
|
18
|
Network Biology and Artificial Intelligence Drive the Understanding of the Multidrug Resistance Phenotype in Cancer. Drug Resist Updat 2022; 60:100811. [DOI: 10.1016/j.drup.2022.100811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/07/2023]
|
19
|
PCK1 regulates neuroendocrine differentiation in a positive feedback loop of LIF/ZBTB46 signalling in castration-resistant prostate cancer. Br J Cancer 2021; 126:778-790. [PMID: 34815524 DOI: 10.1038/s41416-021-01631-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/24/2021] [Accepted: 11/03/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Castration-resistant prostate cancer (CRPC) patients frequently develop neuroendocrine differentiation, with high mortality and no effective treatment. However, the regulatory mechanism that connects neuroendocrine differentiation and metabolic adaptation in response to therapeutic resistance of prostate cancer remain to be unravelled. METHODS By unbiased cross-correlation between RNA-sequencing, database signatures, and ChIP analysis, combining in vitro cell lines and in vivo animal models, we identified that PCK1 is a pivotal regulator in therapy-induced neuroendocrine differentiation of prostate cancer through a LIF/ZBTB46-driven glucose metabolism pathway. RESULTS Upregulation of PCK1 supports cell proliferation and reciprocally increases ZBTB46 levels to promote the expression of neuroendocrine markers that are conducive to the development of neuroendocrine characteristic CRPC. PCK1 and neuroendocrine marker expressions are regulated by the ZBTB46 transcription factor upon activation of LIF signalling. Targeting PCK1 can reduce the neuroendocrine phenotype and decrease the growth of prostate cancer cells in vitro and in vivo. CONCLUSION Our study uncovers LIF/ZBTB46 signalling activation as a key mechanism for upregulating PCK1-driven glucose metabolism and neuroendocrine differentiation of CRPC, which may yield significant improvements in prostate cancer treatment after ADT using PCK1 inhibitors.
Collapse
|
20
|
Thankamony AP, Subbalakshmi AR, Jolly MK, Nair R. Lineage Plasticity in Cancer: The Tale of a Skin-Walker. Cancers (Basel) 2021; 13:3602. [PMID: 34298815 PMCID: PMC8306016 DOI: 10.3390/cancers13143602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/04/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
Lineage plasticity, the switching of cells from one lineage to another, has been recognized as a cardinal property essential for embryonic development, tissue repair and homeostasis. However, such a highly regulated process goes awry when cancer cells exploit this inherent ability to their advantage, resulting in tumorigenesis, relapse, metastasis and therapy resistance. In this review, we summarize our current understanding on the role of lineage plasticity in tumor progression and therapeutic resistance in multiple cancers. Lineage plasticity can be triggered by treatment itself and is reported across various solid as well as liquid tumors. Here, we focus on the importance of lineage switching in tumor progression and therapeutic resistance of solid tumors such as the prostate, lung, hepatocellular and colorectal carcinoma and the myeloid and lymphoid lineage switch observed in leukemias. Besides this, we also discuss the role of epithelial-mesenchymal transition (EMT) in facilitating the lineage switch in biphasic cancers such as aggressive carcinosarcomas. We also discuss the mechanisms involved, current therapeutic approaches and challenges that lie ahead in taming the scourge of lineage plasticity in cancer.
Collapse
Affiliation(s)
- Archana P. Thankamony
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Kerala 695014, India;
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Ayalur Raghu Subbalakshmi
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India;
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India;
| | - Radhika Nair
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Kerala 695014, India;
| |
Collapse
|
21
|
Interplay of Epidermal Growth Factor Receptor and Signal Transducer and Activator of Transcription 3 in Prostate Cancer: Beyond Androgen Receptor Transactivation. Cancers (Basel) 2021; 13:cancers13143452. [PMID: 34298665 PMCID: PMC8307975 DOI: 10.3390/cancers13143452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 01/16/2023] Open
Abstract
Prostate cancer (PCa) is one of the most common cancers in the world and causes thousands of deaths every year. Conventional therapy for PCa includes surgery and androgen deprivation therapy (ADT). However, about 10-20% of all PCa cases relapse; there is also the further development of castration resistant adenocarcinoma (CRPC-Adeno) or neuroendocrine (NE) PCa (CRPC-NE). Due to their androgen-insensitive properties, both CRPC-Adeno and CRPC-NE have limited therapeutic options. Accordingly, this study reveals the inductive mechanisms of CRPC (for both CRPC-Adeno and CRPC-NE) and fulfils an urgent need for the treatment of PCa patients. Although previous studies have illustrated the emerging roles of epidermal growth factor receptors (EGFR), signal transducer, and activator of transcription 3 (STAT3) signaling in the development of CRPC, the regulatory mechanisms of this interaction between EGFR and STAT3 is still unclear. Our recent studies have shown that crosstalk between EGFR and STAT3 is critical for NE differentiation of PCa. In this review, we have collected recent findings with regard to the involvement of EGFR and STAT3 in malignancy progression and discussed their interactions during the development of therapeutic resistance for PCa.
Collapse
|
22
|
Schiewer MJ, Knudsen KE. Basic Science and Molecular Genetics of Prostate Cancer Aggressiveness. Urol Clin North Am 2021; 48:339-347. [PMID: 34210489 DOI: 10.1016/j.ucl.2021.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Androgen receptor function, tumor cell plasticity, loss of tumor suppressors, and defects in DNA repair genes affect aggressive features of prostate cancer. Prostate cancer development, progression, and aggressive behavior are often attributable to function of the androgen receptor. Tumor cell plasticity, neuroendocrine features, and loss of tumor suppressors lend aggressive behavior to prostate cancer cells. DNA repair defects have ramifications for prostate cancer cell behavior.
Collapse
Affiliation(s)
- Matthew J Schiewer
- Department of Urology, Urology Research Laboratory, Thomas Jefferson University, Sidney Kimmel Cancer Center, 233 South 10th Street BLSB 804, Philadelphia, PA 19107, USA; Department of Cancer Biology, Urology Research Laboratory, Thomas Jefferson University, Sidney Kimmel Cancer Center, 233 South 10th Street BLSB 804, Philadelphia, PA 19107, USA.
| | - Karen E Knudsen
- Department of Cancer Biology, Thomas Jefferson University, 233 South 10th Street BLSB 1050, Philadelphia, PA 19107, USA; Department of Urology, Thomas Jefferson University, 233 South 10th Street BLSB 1050, Philadelphia, PA 19107, USA; Department of Medical Oncology, Thomas Jefferson University, 233 South 10th Street BLSB 1050, Philadelphia, PA 19107, USA; Department of Radiation Oncology, Thomas Jefferson University, 233 South 10th Street BLSB 1050, Philadelphia, PA 19107, USA. https://twitter.com/SKCCDirector
| |
Collapse
|
23
|
Undesirable Status of Prostate Cancer Cells after Intensive Inhibition of AR Signaling: Post-AR Era of CRPC Treatment. Biomedicines 2021; 9:biomedicines9040414. [PMID: 33921329 PMCID: PMC8069212 DOI: 10.3390/biomedicines9040414] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/19/2022] Open
Abstract
Recent advances in prostate cancer (PC) research unveiled real androgen receptor (AR) functions in castration-resistant PC (CRPC). Moreover, AR still accelerates PC cell proliferation via the activation of several mechanisms (e.g., mutation, variants, and amplifications in CRPC). New-generation AR signaling-targeted agents, inhibiting extremely the activity of AR, were developed based on these incontrovertible mechanisms of AR-induced CRPC progression. However, long-term administration of AR signaling-targeted agents subsequently induces the major problem that AR (complete)-independent CRPC cells present neither AR nor prostate-specific antigen, including neuroendocrine differentiation as a subtype of AR-independent CRPC. Moreover, there are few treatments effective for AR-independent CRPC with solid evidence. This study focuses on the transformation mechanisms of AR-independent from AR-dependent CRPC cells and potential treatment strategy for AR-independent CRPC and discusses them based on a review of basic and clinical literature.
Collapse
|