1
|
Corti A, Lenoci D, Corino VDA, Mattavelli D, Ravanelli M, Poli T, Cavalieri S, Licitra L, De Cecco L, Mainardi L. Interplay between MRI radiomics and immune gene expression signatures in oral squamous cell carcinoma. Sci Rep 2025; 15:12622. [PMID: 40221527 PMCID: PMC11993570 DOI: 10.1038/s41598-025-96821-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
With the advances in immunotherapy and the challenge of poor responsiveness in oral squamous cell carcinoma (OSCC) patients, understanding the tumor microenvironment is crucial. Radiogenomics offers the potential to provide pre-operative, non-invasive image-derived immune biomarkers. To this aim, the present study explores the capability of MRI-based radiomics to describe patients' immune state in OSCC. Seven MRI-based radiomic, 29 immune-related gene expression signatures were computed and deconvolution analysis was performed for a subset of OSCC from the BD2Decide database. A correlation-driven analysis identified key associations between radiomic and immune-related signatures and cell populations. Radiomic classifiers of the gene expression signatures were then developed to evaluate their capability to stratify patients based on immune status. MRI-based radiomic models showed promising results in predicting a gene expression signature associated with significant prognostic value for HNSCC patients who underwent radiotherapy (AUC = 0.92), suggesting these models' potential in distinguishing radioresistant from radiosensitive patients, aiding treatment decisions. Additionally, radiomic signatures reflected immune infiltrating cells in our cohort (M1, CD8 + T, B cells). MRI-radiomic signatures and associated models could become non-invasive methods to evaluate the prognosis and treatment choice in OSCC patients. Based on our promising results, and upon external validation, MRI-radiomics could enhance personalized medicine approaches.
Collapse
Affiliation(s)
- Anna Corti
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, Milan, 20133, Italy.
| | - Deborah Lenoci
- Integrated Biology of Rare Tumors, Department of Research, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Valentina D A Corino
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, Milan, 20133, Italy
- Cardiotech Lab, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Davide Mattavelli
- Unit of Otorhinolaryngology-Head and Neck Surgery, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, ASST Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | - Marco Ravanelli
- Unit of Radiology, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, ASST Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | - Tito Poli
- Maxillo-Facial Surgery Division, Head and Neck Department, University Hospital of Parma, Parma, Italy
| | - Stefano Cavalieri
- Head and Neck Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Lisa Licitra
- Head and Neck Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Loris De Cecco
- Integrated Biology of Rare Tumors, Department of Research, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Luca Mainardi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, Milan, 20133, Italy
| |
Collapse
|
2
|
Zhang Y, Xie J, Wu H, Huang J, Zheng D, Wang S, Jia X, He Z, Gong Y, Ju L, Sun Q. NK cell based immunotherapy against oral squamous cell carcinoma. Front Immunol 2024; 15:1440764. [PMID: 39192980 PMCID: PMC11347299 DOI: 10.3389/fimmu.2024.1440764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC), a major subtype of head and neck cancers, presents significant challenges due to its aggressive feature and limited therapeutic efficacy of conventional treatments. In response to these challenges, Natural Killer (NK) cells, a vital component of the innate immune system, are being explored for their therapeutic potential in OSCC due to their inherent ability to target and eliminate cancer cells without prior sensitization. This review uniquely focuses on the evolving role of NK cells specifically in OSCC, incorporating recent advancements in CAR-NK cell engineering and personalized therapy approaches that have not been comprehensively covered in previous reviews. The mechanisms through which NK cells exert cytotoxic effects on tumor cells include direct killing through the engagement of natural cytotoxic receptors and antibody-dependent cellular cytotoxicity (ADCC), making them promising agents in cancer immunotherapy. Additionally, the article explores recent advancements in engineering NK cells to enhance their antitumor activity, such as the modification with chimeric antigen receptors (CARs) to target specific tumor antigens. Clinical implications of NK cell-based therapies, including the challenges of integrating these treatments with existing protocols and the potential for personalized therapy, are examined. The review highlights the promise of NK cell therapies in improving outcomes for OSCC patients and outlines future directions for research in this dynamic field of oncological immunotherapy.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Stomatology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jianming Xie
- Department of Otolaryngology & Head and Neck Surgery, Anyuan People’s hospital, Ganzhou, China
| | - Haoran Wu
- Southern Medical University, Guangzhou, Guangdong, China
| | - Jinhui Huang
- Southern Medical University, Guangzhou, Guangdong, China
| | - Danna Zheng
- Southern Medical University, Guangzhou, Guangdong, China
| | - Shaotong Wang
- Southern Medical University, Guangzhou, Guangdong, China
| | - Xueqiang Jia
- Southern Medical University, Guangzhou, Guangdong, China
| | - Zongzhong He
- Department of Transfusion Medicine, General Hospital of Southern Theatre Command, Guangzhou, Guangdong, China
| | - Ying Gong
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Linling Ju
- Medical School of Nantong University, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Qiurong Sun
- Department of Stomatology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
3
|
Liu S, Liu W, Ding Z, Yang X, Jiang Y, Wu Y, Liu Y, Wu J. Identification and validation of a novel tumor driver gene signature for diagnosis and prognosis of head and neck squamous cell carcinoma. Front Mol Biosci 2022; 9:912620. [PMID: 36339718 PMCID: PMC9631213 DOI: 10.3389/fmolb.2022.912620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 10/04/2022] [Indexed: 11/12/2023] Open
Abstract
Objective: Head and neck squamous cell carcinoma (HNSCC) is a common heterogeneous cancer with complex carcinogenic factors. However, the current TNM staging criteria to judge its severity to formulate treatment plans and evaluate the prognosis are particularly weak. Therefore, a robust diagnostic model capable of accurately diagnosing and predicting HNSCC should be established. Methods: Gene expression and clinical data were retrieved from The Cancer Genome Atlas and Gene Expression Omnibus databases. Key prognostic genes associated with HNSCC were screened with the weighted gene co-expression network analysis and least absolute shrinkage and selection operator (LASSO) Cox regression model analysis. We used the timeROC and survival R packages to conduct time-dependent receiver operating characteristic curve analyses and calculated the area under the curve at different time points of model prediction. Patients in the training and validation groups were divided into high- and low-risk subgroups, and Kaplan-Meier (K-M) survival curves were plotted for all subgroups. Subsequently, LASSO and support vector machine algorithms were used to screen genes to construct diagnostic model. Furthermore, we used the Wilcoxon signed-rank test to compare the half-maximal inhibitory concentrations of common chemotherapy drugs among patients in different risk groups. Finally, the expression levels of eight genes were measured using quantitative real-time polymerase chain reaction and immunohistochemistry. Results: Ten genes (SSB, PFKP, NAT10, PCDH9, SHANK2, PAX8, CELSR3, DCLRE1C, MAP2K7, and ODF4) with prognostic potential were identified, and a risk score was derived accordingly. Patients were divided into high- and low-risk groups based on the median risk score. The K-M survival curves confirmed that patients with high scores had significantly worse overall survival. Receiver operating characteristic curves proved that the prognostic signature had good sensitivity and specificity for predicting the prognosis of patients with HNSCC. Univariate and multivariate Cox regression analyses confirmed that the gene signature was an independent prognostic risk factor for HNSCC. Diagnostic model was built by identifying eight genes (SSB, PFKP, NAT10, PCDH9, CELSR3, DCLRE1C, MAP2K7, and ODF4). The high-risk group showed higher sensitivity to various common chemotherapeutic drugs. DCLRE1C expression was higher in normal tissues than in HNSCC tissues. Conclusion: Our study identified the important role of tumor-driver genes in HNSCC and their potential clinical diagnostic and prognostic values to facilitate individualized management of patients with HNSCC.
Collapse
Affiliation(s)
- Shixian Liu
- Department of Otolaryngology-Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Medical University, Hefei, China
- Graduate School of Anhui Medical University, Hefei, China
| | - Weiwei Liu
- Department of Otolaryngology-Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Medical University, Hefei, China
- Graduate School of Anhui Medical University, Hefei, China
| | - Zhao Ding
- Department of Otolaryngology-Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Medical University, Hefei, China
- Graduate School of Anhui Medical University, Hefei, China
| | - Xue Yang
- Department of Otolaryngology-Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Medical University, Hefei, China
- Graduate School of Anhui Medical University, Hefei, China
| | - Yuan Jiang
- Department of Otolaryngology-Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Medical University, Hefei, China
- Graduate School of Anhui Medical University, Hefei, China
| | - Yu Wu
- Department of Otolaryngology-Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Medical University, Hefei, China
- Graduate School of Anhui Medical University, Hefei, China
| | - Yehai Liu
- Department of Otolaryngology-Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jing Wu
- Department of Otolaryngology-Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
4
|
Qu T, Miao C, Zhang Z, Li H, Liu L, Lin W, Li C, Pan J, Ye L, Cao Y. Prognostic signature of endoplasmic reticulum stress-related long noncoding RNAs in head and neck squamous cell carcinoma: Association with somatic mutation and tumor immune microenvironment. J Dent Sci 2022; 18:541-550. [PMID: 37021255 PMCID: PMC10068581 DOI: 10.1016/j.jds.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/06/2022] [Indexed: 10/14/2022] Open
Abstract
Background/purpose Analysis of endoplasmic reticulum stress (ERS)-related long noncoding RNAs (LncRNAs) may enable prognostic stratification in patients with head and neck squamous cell carcinoma (HNSCC). This study aimed to comprehensively analyze the ERS-related LncRNAs signature and its effects on the prognosis, tumorigenesis, and tumor immune microenvironment in HNSCC. Materials and methods The transcriptome data of HNSCC were obtained from TCGA. Least absolute shrinkage selection operator algorithm, and multivariate Cox regression were used to screen LncRNAs for the signature construction. Somatic mutation, gene enrichment, and immune infiltration analyses were further performed. Results 458 ERS-related LncRNAs were identified and 55 of which were correlated with HNSCC prognosis. Ten ERS-related LncRNAs were selected to establish a risk prediction signature. When dividing patients into high-risk and low-risk groups by signature score, high-risk group correlated with worse survival rates (hazard ratio = 1.211; 95% confidence interval 1.123-1.306, P < 0.001). The area under the curve was 0.751 and 0.716 in the training and validation cohorts at 3-year. Moreover, high-risk group have increased somatic mutation rates and reduced infiltration abundancy of B cells and CD8+ T cells. Conclusion The prognostic signature based on ERS-related LncRNAs may serve as a predictor of altered oncogene mutations and immune microenvironment, which provided an insight into the relationship between ERS, LncRNAs, and tumor progression.
Collapse
|
5
|
Vaccine-Based Immunotherapy for Head and Neck Cancers. Cancers (Basel) 2021; 13:cancers13236041. [PMID: 34885150 PMCID: PMC8656843 DOI: 10.3390/cancers13236041] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/27/2021] [Accepted: 11/28/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Therapeutic vaccines are given to patients with cancer, as opposed to prophylactic vaccines given to a healthy population. The challenge for therapeutic oncological vaccines is to stimulate an immune T cell response against endogenous (or derived) antigens that is sufficiently potent to induce cytotoxic activity and broad enough to take tumor heterogeneity into account. The purpose of this article is to provide an updated review of the prophylactic and therapeutic vaccines that target viral or non-viral antigens, particularly in head and neck cancers. Abstract In 2019, the FDA approved pembrolizumab, a monoclonal antibody targeting PD-1, for the first-line treatment of recurrent or metastatic head and neck cancers, despite only a limited number of patients benefiting from the treatment. Promising effects of therapeutic vaccination led the FDA to approve the use of the first therapeutic vaccine in prostate cancer in 2010. Research in the field of therapeutic vaccination, including possible synergistic effects with anti-PD(L)1 treatments, is evolving each year, and many vaccines are in pre-clinical and clinical studies. The aim of this review article is to discuss vaccines as a new therapeutic strategy, particularly in the field of head and neck cancers. Different vaccination technologies are discussed, as well as the results of the first clinical trials in HPV-positive, HPV-negative, and EBV-induced head and neck cancers.
Collapse
|
6
|
Feng B, Hess J. Immune-Related Mutational Landscape and Gene Signatures: Prognostic Value and Therapeutic Impact for Head and Neck Cancer. Cancers (Basel) 2021; 13:cancers13051162. [PMID: 33800421 PMCID: PMC7962834 DOI: 10.3390/cancers13051162] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Immunotherapy has emerged as a standard-of-care for most human malignancies, including head and neck cancer, but only a limited number of patients exhibit a durable clinical benefit. An urgent medical need is the establishment of accurate response predictors, which is handicapped by the growing body of molecular, cellular and clinical variables that modify the complex nature of an effective anti-tumor immune response. This review summarizes more recent efforts to elucidate immune-related mutational landscapes and gene expression signatures by integrative analysis of multi-omics data, and highlights their potential therapeutic impact for head and neck cancer. A better knowledge of the underlying principles and relevant interactions could pave the way for rational therapeutic combinations to improve the efficacy of immunotherapy, in particular for those cancer patients at a higher risk for treatment failure. Abstract Immunotherapy by immune checkpoint inhibition has become a main pillar in the armamentarium to treat head and neck cancer and is based on the premise that the host immune system can be reactivated to successfully eliminate cancer cells. However, the response rate remains low and only a small subset of head and neck cancer patients achieves a durable clinical benefit. The availability of multi-omics data and emerging computational technologies facilitate not only a deeper understanding of the cellular composition in the tumor immune microenvironment but also enables the study of molecular principles in the complex regulation of immune surveillance versus tolerance. These knowledges will pave the way to apply immunotherapy more precisely and effectively. This review aims to provide a holistic view on how the immune landscape dictates the tumor fate and vice versa, and how integrative analysis of multi-omics data contribute to our current knowledge on the accuracy of predictive biomarkers and on a broad range of factors influencing the response to immunotherapy in head and neck cancer.
Collapse
Affiliation(s)
- Bohai Feng
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany;
- Department of Otorhinolaryngology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jochen Hess
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany;
- Research Group Molecular Mechanisms of Head and Neck Tumors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence:
| |
Collapse
|