1
|
Speltri G, Porto F, Boschi A, Uccelli L, Martini P. Recent Advances in Preclinical Studies of the Theranostic Agent [ 64Cu]CuCl 2. Molecules 2024; 29:4085. [PMID: 39274933 PMCID: PMC11397388 DOI: 10.3390/molecules29174085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/09/2024] [Accepted: 08/28/2024] [Indexed: 09/16/2024] Open
Abstract
64Cu is gaining recognition not only for its diagnostic capabilities in nuclear medical imaging but also for its therapeutic and theranostic potential. The simultaneous β- and Auger emissions of 64Cu can be utilized to induce a therapeutic effect on cancerous lesions. The finding of the exceptional biodistribution characteristics of the radionuclide 64Cu, when administered as basic copper ions, has highlighted its potential therapeutic application in cancer treatment. Preclinical and clinical research on the effectiveness of [64Cu]CuCl2 as a theranostic radiopharmaceutical has commenced only in the past decade. Current clinical studies are increasingly demonstrating the high specificity and uptake of [64Cu]Cu2+ by malignant tissues during early cancer progression, indicating its potential for early cancer diagnosis across various organs. This short review aims to present the latest preclinical studies involving [64Cu]CuCl2, offering valuable insights for researchers planning new in vitro and in vivo studies to explore the theranostic potential of [64Cu]Cu2+.
Collapse
Affiliation(s)
- Giorgia Speltri
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, 44121 Ferrara, Italy
| | - Francesca Porto
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Alessandra Boschi
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, 44121 Ferrara, Italy
| | - Licia Uccelli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Petra Martini
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
2
|
Shinada M, Takahashi M, Igarashi C, Matsumoto H, Hihara F, Tachibana T, Oikawa M, Suzuki H, Zhang MR, Higashi T, Kurihara H, Yoshii Y, Doi Y. 64Cu 2+ Complexes of Tripodal Amine Ligands' In Vivo Tumor and Liver Uptakes and Intracellular Cu Distribution in the Extrahepatic Bile Duct Carcinoma Cell Line TFK-1: A Basic Comparative Study. Pharmaceuticals (Basel) 2024; 17:820. [PMID: 39065671 PMCID: PMC11280065 DOI: 10.3390/ph17070820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Copper (Cu) is a critical element for cancer cell proliferation and considerably accumulates in the nucleus. 64Cu2+ is an anticancer radiopharmaceutical that targets the copper requirement of cancer cells. However, intravenously injected 64Cu2+ ions primarily accumulate in the liver. Ligand complexation of 64Cu2+ may be a promising method for increasing tumor delivery by reducing liver uptake. In this study, we used three tripodal amine ligands [tris(2-aminoethyl)amine (Tren), diethylenetriamine (Dien), and tris(2-pyridylmethyl)amine (TPMA)] to enclose 64Cu2+ ions and compared their in vivo tumor and liver uptakes using a tumor-bearing xenograft mouse model of the extrahepatic bile duct carcinoma cell line TFK-1. We examined intracellular Cu distribution using microparticle-induced X-ray emission (micro-PIXE) analysis of these compounds. 64Cu2+-Tren and 64Cu2+-Dien showed higher tumor uptake than 64Cu2+-TPMA and 64Cu2+ ions in TFK-1 tumors. Among the three 64Cu2+ complexes and 64Cu2+ ions, liver uptake was inversely correlated with tumor uptake. Micro-PIXE analysis showed that in vitro cellular uptake was similar to in vivo tumor uptake, and nuclear delivery was the highest for 64Cu2+-Tren. Conclusively, an inverse correlation between tumor and liver uptake was observed using three 64Cu2+ complexes of tripodal amine ligands and 64Cu2+ ions. These results provide useful information for the future development of anticancer 64Cu radiopharmaceuticals.
Collapse
Affiliation(s)
- Mitsuhiro Shinada
- Faculty of Science, Toho University, Funabashi 274-8510, Japan; (M.T.); (T.T.); (Y.D.)
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (C.I.); (H.M.); (F.H.); (M.O.); (H.S.); (M.-R.Z.); (T.H.)
- Department of Diagnostic Radiology, Kanagawa Cancer Center, Kanagawa 241-8515, Japan;
| | - Masashi Takahashi
- Faculty of Science, Toho University, Funabashi 274-8510, Japan; (M.T.); (T.T.); (Y.D.)
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (C.I.); (H.M.); (F.H.); (M.O.); (H.S.); (M.-R.Z.); (T.H.)
| | - Chika Igarashi
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (C.I.); (H.M.); (F.H.); (M.O.); (H.S.); (M.-R.Z.); (T.H.)
- Department of Diagnostic Radiology, Kanagawa Cancer Center, Kanagawa 241-8515, Japan;
| | - Hiroki Matsumoto
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (C.I.); (H.M.); (F.H.); (M.O.); (H.S.); (M.-R.Z.); (T.H.)
- Department of Diagnostic Radiology, Kanagawa Cancer Center, Kanagawa 241-8515, Japan;
| | - Fukiko Hihara
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (C.I.); (H.M.); (F.H.); (M.O.); (H.S.); (M.-R.Z.); (T.H.)
| | - Tomoko Tachibana
- Faculty of Science, Toho University, Funabashi 274-8510, Japan; (M.T.); (T.T.); (Y.D.)
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (C.I.); (H.M.); (F.H.); (M.O.); (H.S.); (M.-R.Z.); (T.H.)
| | - Masakazu Oikawa
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (C.I.); (H.M.); (F.H.); (M.O.); (H.S.); (M.-R.Z.); (T.H.)
| | - Hisashi Suzuki
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (C.I.); (H.M.); (F.H.); (M.O.); (H.S.); (M.-R.Z.); (T.H.)
| | - Ming-Rong Zhang
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (C.I.); (H.M.); (F.H.); (M.O.); (H.S.); (M.-R.Z.); (T.H.)
| | - Tatsuya Higashi
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (C.I.); (H.M.); (F.H.); (M.O.); (H.S.); (M.-R.Z.); (T.H.)
| | - Hiroaki Kurihara
- Department of Diagnostic Radiology, Kanagawa Cancer Center, Kanagawa 241-8515, Japan;
| | - Yukie Yoshii
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (C.I.); (H.M.); (F.H.); (M.O.); (H.S.); (M.-R.Z.); (T.H.)
- Department of Diagnostic Radiology, Kanagawa Cancer Center, Kanagawa 241-8515, Japan;
| | - Yoshihiro Doi
- Faculty of Science, Toho University, Funabashi 274-8510, Japan; (M.T.); (T.T.); (Y.D.)
| |
Collapse
|
3
|
Pinto CIG, Branco ADM, Bucar S, Fonseca A, Abrunhosa AJ, da Silva CL, Guerreiro JF, Mendes F. Evaluation of the theranostic potential of [ 64Cu]CuCl 2 in glioblastoma spheroids. EJNMMI Res 2024; 14:26. [PMID: 38453813 PMCID: PMC10920519 DOI: 10.1186/s13550-024-01084-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Glioblastoma is an extremely aggressive malignant tumor with a very poor prognosis. Due to the increased proliferation rate of glioblastoma, there is the development of hypoxic regions, characterized by an increased concentration of copper (Cu). Considering this, 64Cu has attracted attention as a possible theranostic radionuclide for glioblastoma. In particular, [64Cu]CuCl2 accumulates in glioblastoma, being considered a suitable agent for positron emission tomography. Here, we explore further the theranostic potential of [64Cu]CuCl2, by studying its therapeutic effects in advanced three-dimensional glioblastoma cellular models. First, we established spheroids from three glioblastoma (T98G, U373, and U87) and a non-tumoral astrocytic cell line. Then, we evaluated the therapeutic responses of spheroids to [64Cu]CuCl2 exposure by analyzing spheroids' growth, viability, and cells' proliferative capacity. Afterward, we studied possible mechanisms responsible for the therapeutic outcomes, including the uptake of 64Cu, the expression levels of a copper transporter (CTR1), the presence of a cancer stem cell population, and the production of reactive oxygen species (ROS). RESULTS Results revealed that [64Cu]CuCl2 is able to significantly reduce spheroids' growth and viability, while also affecting cells' proliferation capacity. The uptake of 64Cu, the presence of cancer stem-like cells and the production of ROS were in accordance with the therapeutic response. However, expression levels of CTR1 were not in agreement with uptake levels, revealing that other mechanisms could be involved in the uptake of 64Cu. CONCLUSIONS Overall, our results further support [64Cu]CuCl2 potential as a theranostic agent for glioblastoma, unveiling potential mechanisms that could be involved in the therapeutic response.
Collapse
Affiliation(s)
- Catarina I G Pinto
- C2TN - Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - André D M Branco
- Department of Bioengineering, iBB - Institute for Bioengineering and Biosciences, Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Sara Bucar
- Department of Bioengineering, iBB - Institute for Bioengineering and Biosciences, Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Alexandra Fonseca
- CIBIT/ICNAS Instituto de Ciências Nucleares Aplicadas à Saúde, Universidade de Coimbra, Coimbra, Portugal
- ICNAS PHARMA, Universidade de Coimbra, Coimbra, Portugal
| | - Antero J Abrunhosa
- CIBIT/ICNAS Instituto de Ciências Nucleares Aplicadas à Saúde, Universidade de Coimbra, Coimbra, Portugal
- ICNAS PHARMA, Universidade de Coimbra, Coimbra, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering, iBB - Institute for Bioengineering and Biosciences, Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Joana F Guerreiro
- C2TN - Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa and Laboratório Associado Para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - Filipa Mendes
- C2TN - Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
- DECN - Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
4
|
Raitanen J, Barta B, Fuchs H, Hacker M, Balber T, Georg D, Mitterhauser M. Radiobiological Assessment of Targeted Radionuclide Therapy with [ 177Lu]Lu-PSMA-I&T in 2D vs. 3D Cell Culture Models. Int J Mol Sci 2023; 24:17015. [PMID: 38069337 PMCID: PMC10706939 DOI: 10.3390/ijms242317015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
In vitro therapeutic efficacy studies are commonly conducted in cell monolayers. However, three-dimensional (3D) tumor spheroids are known to better represent in vivo tumors. This study used [177Lu]Lu-PSMA-I&T, an already clinically applied radiopharmaceutical for targeted radionuclide therapy against metastatic castrate-resistant prostate cancer, to demonstrate the differences in the radiobiological response between 2D and 3D cell culture models of the prostate cancer cell lines PC-3 (PSMA negative) and LNCaP (PSMA positive). After assessing the target expression in both models via Western Blot, cell viability, reproductive ability, and growth inhibition were assessed. To investigate the geometric effects on dosimetry for the 2D vs. 3D models, Monte Carlo simulations were performed. Our results showed that PSMA expression in LNCaP spheroids was highly preserved, and target specificity was shown in both models. In monolayers of LNCaP, no short-term (48 h after treatment), but only long-term (14 days after treatment) radiobiological effects were evident, showing decreased viability and reproductive ability with the increasing activity. Further, LNCaP spheroid growth was inhibited with the increasing activity. Overall, treatment efficacy was higher in LNCaP spheroids compared to monolayers, which can be explained by the difference in the resulting dose, among others.
Collapse
Affiliation(s)
- Julia Raitanen
- Ludwig Boltzmann Institute Applied Diagnostics, 1090 Vienna, Austria; (J.R.)
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria
- Vienna Doctoral School of Chemistry (DoSChem), University of Vienna, 1090 Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Bernadette Barta
- Ludwig Boltzmann Institute Applied Diagnostics, 1090 Vienna, Austria; (J.R.)
| | - Hermann Fuchs
- Department of Radiation Oncology, Division of Medical Radiation Physics, Medical University of Vienna, 1090 Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Theresa Balber
- Ludwig Boltzmann Institute Applied Diagnostics, 1090 Vienna, Austria; (J.R.)
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria
- Joint Applied Medicinal Radiochemistry Facility, Medical University of Vienna, University of Vienna, 1090 Vienna, Austria
| | - Dietmar Georg
- Department of Radiation Oncology, Division of Medical Radiation Physics, Medical University of Vienna, 1090 Vienna, Austria
| | - Markus Mitterhauser
- Ludwig Boltzmann Institute Applied Diagnostics, 1090 Vienna, Austria; (J.R.)
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Joint Applied Medicinal Radiochemistry Facility, Medical University of Vienna, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
5
|
Serban RM, Niculae D, Manda G, Neagoe I, Dobre M, Niculae DA, Temelie M, Mustăciosu C, Leonte RA, Chilug LE, Cornoiu MR, Cocioabă D, Stan M, Dinischiotu A. Modifications in cellular viability, DNA damage and stress responses inflicted in cancer cells by copper-64 ions. Front Med (Lausanne) 2023; 10:1197846. [PMID: 37415761 PMCID: PMC10320858 DOI: 10.3389/fmed.2023.1197846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/31/2023] [Indexed: 07/08/2023] Open
Abstract
Due to combined therapeutical emissions, a high linear energy transfer Auger-electrons with the longer ranged β- particles, 64Cu-based radiopharmaceuticals raise particular theragnostic interest in cancer, by joined therapeutic and real-time PET imaging properties. The in vitro study aimed to investigate the biological and molecular background of 64CuCl2 therapy by analyzing the damages and stress responses inflicted in various human normal and tumor cell lines. Colon (HT29 and HCT116) and prostate carcinoma (DU145) cell lines, as well as human normal BJ fibroblasts, were treated up to 72 h with 2-40 MBq/mL 64CuCl2. Radioisotope uptake and retention were assessed, and cell viability/death, DNA damage, oxidative stress, and the expression of 84 stress genes were investigated at various time points after [64Cu]CuCl2 addition. All the investigated cells incorporated 64Cu ions similarly, independent of their tumoral or normal status, but their fate after exposure to [64Cu]CuCl2 was cell-dependent. The most striking cytotoxic effects of the radioisotope were registered in colon carcinoma HCT116 cells, for which a substantial decrease in the number of metabolically active cells, and an increased DNA damage and oxidative stress were registered. The stress gene expression study highlighted the activation of both death and repair mechanisms in these cells, related to extrinsic apoptosis, necrosis/necroptosis or autophagy, and cell cycle arrest, nucleotide excision repair, antioxidant, and hypoxic responses, respectively. The in vitro study indicated that 40 MBq/mL [64Cu]CuCl2 delivers a therapeutic effect in human colon carcinoma, but its use is limited by harmful, yet lower effects on normal fibroblasts. The exposure of tumor cells to 20 MBq/mL [64Cu]CuCl2, might be used for a softer approach aiming for a lower radiotoxicity in normal fibroblasts as compared to tumor cells. This radioactive concentration was able to induce a persistent decrease in the number of metabolically active cells, accompanied by DNA damage and oxidative stress, associated with significant changes in stress gene expression in HCT116 colon cancer cells.
Collapse
Affiliation(s)
- Radu M. Serban
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Dana Niculae
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
- Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - Gina Manda
- Radiobiology Laboratory, National Institute of Pathology "Victor Babeș", Bucharest, Romania
| | - Ionela Neagoe
- Radiobiology Laboratory, National Institute of Pathology "Victor Babeș", Bucharest, Romania
| | - Maria Dobre
- Radiobiology Laboratory, National Institute of Pathology "Victor Babeș", Bucharest, Romania
| | - Dragoș A. Niculae
- Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - Mihaela Temelie
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
| | - Cosmin Mustăciosu
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
| | - Radu A. Leonte
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
| | - Livia E. Chilug
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
| | - Maria R. Cornoiu
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
- Doctoral School of Applied Chemistry and Materials Science, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Bucharest, Romania
| | - Diana Cocioabă
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
- Doctoral School of Physics, Faculty of Physics, University of Bucharest, Măgurele, Ilfov, Romania
| | - Miruna Stan
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| | | |
Collapse
|
6
|
Let’s Go 3D! New Generation of Models for Evaluating Drug Response and Resistance in Prostate Cancer. Int J Mol Sci 2023; 24:ijms24065293. [PMID: 36982368 PMCID: PMC10049142 DOI: 10.3390/ijms24065293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Prostate cancer (PC) is the third most frequently diagnosed cancer worldwide and the second most frequent in men. Several risk factors can contribute to the development of PC, and those include age, family history, and specific genetic mutations. So far, drug testing in PC, as well as in cancer research in general, has been performed on 2D cell cultures. This is mainly because of the vast benefits these models provide, including simplicity and cost effectiveness. However, it is now known that these models are exposed to much higher stiffness; lose physiological extracellular matrix on artificial plastic surfaces; and show changes in differentiation, polarization, and cell–cell communication. This leads to the loss of crucial cellular signaling pathways and changes in cell responses to stimuli when compared to in vivo conditions. Here, we emphasize the importance of a diverse collection of 3D PC models and their benefits over 2D models in drug discovery and screening from the studies done so far, outlining their benefits and limitations. We highlight the differences between the diverse types of 3D models, with the focus on tumor–stroma interactions, cell populations, and extracellular matrix composition, and we summarize various standard and novel therapies tested on 3D models of PC for the purpose of raising awareness of the possibilities for a personalized approach in PC therapy.
Collapse
|
7
|
Capriotti G, Piccardo A, Giovannelli E, Signore A. Targeting Copper in Cancer Imaging and Therapy: A New Theragnostic Agent. J Clin Med 2022; 12:jcm12010223. [PMID: 36615024 PMCID: PMC9821557 DOI: 10.3390/jcm12010223] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Copper is required for cancer cell proliferation and tumor angiogenesis. Copper-64 radionuclide (64Cu), a form of copper chloride (64CuCl2), is rapidly emerging as a diagnostic PET/CT tracer in oncology. It may also represent an interesting alternative to gallium-68 (68Ga) as a radionuclide precursor for labelling radiopharmaceuticals used to investigate neuroendocrine tumors and prostate cancer. This emerging interest is also related to the nuclear properties of 64CuCl2 that make it an ideal theragnostic nuclide. Indeed, 64CuCl2 emits β+ and β- particles together with high-linear-energy-transfer Auger electrons, suggesting the therapeutic potential of 64CuCl2 for the radionuclide cancer therapy of copper-avid tumors. Recently, 64CuCl2 was successfully used to image prostate cancer, bladder cancer, glioblastoma multiforme (GBM), and non-small cell lung carcinoma in humans. Copper cancer uptake was related to the expression of human copper transport 1 (hCTR1) on the cancer cell surface. Biodistribution, toxicology and radiation safety studies showed its radiation and toxicology safety. Based on the findings from the preclinical research studies, 64CuCl2 PET/CT also holds potential for the diagnostic imaging of human hepatocellular carcinoma (HCC), malignant melanoma, and the detection of the intracranial metastasis of copper-avid tumors based on the low physiological background of radioactive copper uptake in the brain.
Collapse
Affiliation(s)
- Gabriela Capriotti
- Department of Medical-Surgical Sciences and of Translational Medicine, Sapienza University of Rome, Nuclear Medicine Unit Sant’Andrea University Hospital, 00189 Rome, Italy
- Correspondence:
| | - Arnoldo Piccardo
- S.C. Medicina Nucleare Ente Ospedaliero “Ospedali Galliera”, 16128 Genova, Italy
| | - Elena Giovannelli
- Department of Medical-Surgical Sciences and of Translational Medicine, Sapienza University of Rome, Nuclear Medicine Unit Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Alberto Signore
- Department of Medical-Surgical Sciences and of Translational Medicine, Sapienza University of Rome, Nuclear Medicine Unit Sant’Andrea University Hospital, 00189 Rome, Italy
| |
Collapse
|
8
|
Latgé A, Boisson F, Ouadi A, Averous G, Thomas L, Imperiale A, Brasse D. 64CuCl 2 PET Imaging of 4T1-Related Allograft of Triple-Negative Breast Cancer in Mice. Molecules 2022; 27:4869. [PMID: 35956819 PMCID: PMC9369569 DOI: 10.3390/molecules27154869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022] Open
Abstract
64CuCl2 is an economic radiotracer for oncologic PET investigations. In the present study, we characterized the uptake of 64CuCl2 in vivo by µPET/CT in an allograft 4T1-related mouse model (BALB/c) of advanced breast cancer. 18F-FDG was used as a comparator. Twenty-two animals were imaged 7-9 days following 4T1-cell implantation inside mammary glands. Dynamic 64CuCl2 µPET/CT acquisition or iterative static images up to 8 h p.i. were performed. Animal biodistribution and tumor uptake were first evaluated in vivo by µPET analysis and then assessed on tissue specimens. Concerning 18F-FDG µPET, a static acquisition was performed at 15 min and 60 min p.i. Tumor 64CuCl2 accumulation increased from 5 min to 4 h p.i., reaching a maximum value of 5.0 ± 0.20 %ID/g. Liver, brain, and muscle 64CuCl2 accumulation was stable over time. The tumor-to-muscle ratio remained stable from 1 to 8 h p.i., ranging from 3.0 to 3.7. Ex vivo data were consistent with in vivo estimations. The 18F-FDG tumor accumulation was 8.82 ± 1.03 %ID/g, and the tumor-to-muscle ratio was 4.54 ± 1.11. 64CuCl2 PET/CT provides good characterization of the 4T1-related breast cancer model and allows for exploration of non-glycolytic cellular pathways potentially of interest for theragnostic strategies.
Collapse
Affiliation(s)
- Adrien Latgé
- Nuclear Medicine and Molecular Imaging Department, Institut de Cancérologie de Strasbourg Europe (ICANS), 17 Rue Albert Calmette, 67200 Strasbourg, France;
| | - Frédéric Boisson
- Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, 23 Rue du Loess, 67037 Strasbourg, France; (F.B.); (A.O.); (L.T.); (D.B.)
- CNRS, UMR7178, 23 Rue du Loess, 67037 Strasbourg, France
| | - Ali Ouadi
- Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, 23 Rue du Loess, 67037 Strasbourg, France; (F.B.); (A.O.); (L.T.); (D.B.)
- CNRS, UMR7178, 23 Rue du Loess, 67037 Strasbourg, France
| | - Gerlinde Averous
- Department of Pathology, Hôpitaux Universitaires de Strasbourg, 1 Avenue Molière, 67200 Strasbourg, France;
| | - Lionel Thomas
- Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, 23 Rue du Loess, 67037 Strasbourg, France; (F.B.); (A.O.); (L.T.); (D.B.)
- CNRS, UMR7178, 23 Rue du Loess, 67037 Strasbourg, France
| | - Alessio Imperiale
- Nuclear Medicine and Molecular Imaging Department, Institut de Cancérologie de Strasbourg Europe (ICANS), 17 Rue Albert Calmette, 67200 Strasbourg, France;
- Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, 23 Rue du Loess, 67037 Strasbourg, France; (F.B.); (A.O.); (L.T.); (D.B.)
- CNRS, UMR7178, 23 Rue du Loess, 67037 Strasbourg, France
| | - David Brasse
- Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, 23 Rue du Loess, 67037 Strasbourg, France; (F.B.); (A.O.); (L.T.); (D.B.)
- CNRS, UMR7178, 23 Rue du Loess, 67037 Strasbourg, France
| |
Collapse
|
9
|
Estimation of biological effect of Cu-64 radiopharmaceuticals with Geant4-DNA simulation. Sci Rep 2022; 12:8957. [PMID: 35624130 PMCID: PMC9142517 DOI: 10.1038/s41598-022-13096-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 05/05/2022] [Indexed: 11/24/2022] Open
Abstract
The aim of this work is to estimate the biological effect of targeted radionuclide therapy using Cu-64, which is a well-known Auger electron emitter. To do so, we evaluate the absorbed dose of emitted particles from Cu-64 using the Geant4-DNA Monte Carlo simulation toolkit. The contribution of beta particles to the absorbed dose is higher than that of Auger electrons. The simulation result agrees with experimental ones evaluated using coumarin-3-carboxylic acid chemical dosimeter. The simulation result is also in good agreement with previous ones obtained using fluorescent nuclear track detector. From the results of present simulation (i.e., absorbed dose estimation) and previous biological experiments using two cell lines (i.e., evaluation of survival curves), we have estimated the relative biological effectiveness (RBE) of Cu-64 emitted particles on CHO wild-type cells and xrs5 cells. The RBE of xrs5 cells exposed to Cu-64 is almost equivalent to that with gamma rays and protons and C ions. This result indicates that the radiosensitivity of xrs5 cells is independent of LET. In comparison to this, the RBE on CHO wild-type cells exposed to Cu-64 is significantly higher than gamma rays and almost equivalent to that irradiated with C ions with a linear energy transfer of 70 keV/μm.
Collapse
|
10
|
Recent Advances in Cancer Imaging with 64CuCl2 PET/CT. Nucl Med Mol Imaging 2022; 56:80-85. [PMID: 35464672 PMCID: PMC8976861 DOI: 10.1007/s13139-022-00738-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 10/19/2022] Open
Abstract
Copper is required for cancer cell proliferation and tumor angiogenesis. Radioactive copper-64 chloride (64CuCl2) is a useful radiotracer for cancer imaging with position emission tomography (PET) based on increased cellular uptake of copper mediated by human copper transporter 1 (hCtr1) expressed on cancer cell membrane. Significant progress has been made in research of using 64CuCl2 as a radiotracer for cancer imaging with PET. Radiation dosimetry study in humans demonstrated radiation safety of 64CuCl2. Recently, 64CuCl2 was successfully used for PET imaging of prostate cancer, bladder cancer, glioblastoma multiforme (GBM), and non-small cell lung carcinoma in humans. Based on the findings from the preclinical research studies, 64CuCl2 PET/CT also holds potential for diagnostic imaging of human hepatocellular carcinoma (HCC), malignant melanoma, and detection of intracranial metastasis of copper-avid tumors based on low physiological background of radioactive copper uptake in the brain. Copper-64 radionuclide emits both β+ and β- particles, suggesting therapeutic potential of 64CuCl2 for radionuclide cancer therapy of copper-avid tumors. Recent progress in production of therapeutic copper-67 radionuclide invites clinical research in use of theranostic pair of 64CuCl2 and 67CuCl2 for cancer imaging and radionuclide therapy.
Collapse
|
11
|
Nuez-Martinez M, Pinto CIG, Guerreiro JF, Mendes F, Marques F, Muñoz-Juan A, Xavier JAM, Laromaine A, Bitonto V, Protti N, Crich SG, Teixidor F, Viñas C. Cobaltabis(dicarbollide) ([ o-COSAN] -) as Multifunctional Chemotherapeutics: A Prospective Application in Boron Neutron Capture Therapy (BNCT) for Glioblastoma. Cancers (Basel) 2021; 13:6367. [PMID: 34944987 PMCID: PMC8699431 DOI: 10.3390/cancers13246367] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE The aim of our study was to assess if the sodium salt of cobaltabis(dicarbollide) and its di-iodinated derivative (Na[o-COSAN] and Na[8,8'-I2-o-COSAN]) could be promising agents for dual anti-cancer treatment (chemotherapy + BNCT) for GBM. METHODS The biological activities of the small molecules were evaluated in vitro with glioblastoma cells lines U87 and T98G in 2D and 3D cell models and in vivo in the small model animal Caenorhabditis elegans (C. elegans) at the L4-stage and using the eggs. RESULTS Our studies indicated that only spheroids from the U87 cell line have impaired growth after treatment with both compounds, suggesting an increased resistance from T98G spheroids, contrary to what was observed in the monolayer culture, which highlights the need to employ 3D models for future GBM studies. In vitro tests in U87 and T98G cells conclude that the amount of 10B inside the cells is enough for BNCT irradiation. BNCT becomes more effective on T98G after their incubation with Na[8,8'-I2-o-COSAN], whereas no apparent cell-killing effect was observed for untreated cells. CONCLUSIONS These small molecules, particularly [8,8'-I2-o-COSAN]-, are serious candidates for BNCT now that the facilities of accelerator-based neutron sources are more accessible, providing an alternative treatment for resistant glioblastoma.
Collapse
Affiliation(s)
- Miquel Nuez-Martinez
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain; (M.N.-M.); (A.M.-J.); (J.A.M.X.); (A.L.); (F.T.)
| | - Catarina I. G. Pinto
- Centro de Ciências e Tecnologias Nucleares, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela, Portugal; (C.I.G.P.); (J.F.G.); (F.M.); (F.M.)
| | - Joana F. Guerreiro
- Centro de Ciências e Tecnologias Nucleares, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela, Portugal; (C.I.G.P.); (J.F.G.); (F.M.); (F.M.)
| | - Filipa Mendes
- Centro de Ciências e Tecnologias Nucleares, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela, Portugal; (C.I.G.P.); (J.F.G.); (F.M.); (F.M.)
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela, Portugal; (C.I.G.P.); (J.F.G.); (F.M.); (F.M.)
| | - Amanda Muñoz-Juan
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain; (M.N.-M.); (A.M.-J.); (J.A.M.X.); (A.L.); (F.T.)
| | - Jewel Ann Maria Xavier
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain; (M.N.-M.); (A.M.-J.); (J.A.M.X.); (A.L.); (F.T.)
| | - Anna Laromaine
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain; (M.N.-M.); (A.M.-J.); (J.A.M.X.); (A.L.); (F.T.)
| | - Valeria Bitonto
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (V.B.); (S.G.C.)
| | | | - Simonetta Geninatti Crich
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (V.B.); (S.G.C.)
| | - Francesc Teixidor
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain; (M.N.-M.); (A.M.-J.); (J.A.M.X.); (A.L.); (F.T.)
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain; (M.N.-M.); (A.M.-J.); (J.A.M.X.); (A.L.); (F.T.)
| |
Collapse
|
12
|
Pareri AU, Koijam AS, Kumar C. Breaking the Silence of Tumor Response: Future Prospects of Targeted Radionuclide Therapy. Anticancer Agents Med Chem 2021; 22:1845-1858. [PMID: 34477531 DOI: 10.2174/1871520621666210903152354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 01/10/2023]
Abstract
Therapy-induced tumor resistance has always been a paramount hurdle in the clinical triumph of cancer therapy. Resistance acquired by tumor through interventions of chemotherapeutic drugs, ionizing radiation, and immunotherapy in the patientsis a severe drawback and major cause of recurrence of tumor and failure of therapeutic responses. To counter acquired resistance in tumor cells, several strategies are practiced such as chemotherapy regimens, immunotherapy, and immunoconjugates, but the outcome is very disappointing for the patients as well as clinicians. Radionuclide therapy using alpha or beta-emitting radionuclide as payload became state-of-the-art for cancer therapy. With the improvement in dosimetric studies, development of high-affinity target molecules, and design of several novel chelating agents which provide thermodynamically stable complexes in vivo, the scope of radionuclide therapy has increased by leaps and bounds. Additionally, radionuclide therapy along with the combination of chemotherapy is gaining importance in pre-clinics, which is quite encouraging. Thus, it opens an avenue for newer cancer therapy modalities where chemotherapy, radiation therapy, and immunotherapy are unable to break the silence of tumor response. This article describes, in brief, the causes of tumor resistance and discusses the potential of radionuclide therapy to enhance tumor response.
Collapse
Affiliation(s)
| | | | - Chandan Kumar
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre Mumbai-400085, India
| |
Collapse
|