1
|
Yakimovich A. Toward the novel AI tasks in infection biology. mSphere 2024; 9:e0059123. [PMID: 38334404 PMCID: PMC10900907 DOI: 10.1128/msphere.00591-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
Machine learning and artificial intelligence (AI) are becoming more common in infection biology laboratories around the world. Yet, as they gain traction in research, novel frontiers arise. Novel artificial intelligence algorithms are capable of addressing advanced tasks like image generation and question answering. However, similar algorithms can prove useful in addressing advanced questions in infection biology like prediction of host-pathogen interactions or inferring virus protein conformations. Addressing such tasks requires large annotated data sets, which are often scarce in biomedical research. In this review, I bring together several successful examples where such tasks were addressed. I underline the importance of formulating novel AI tasks in infection biology accompanied by freely available benchmark data sets to address these tasks. Furthermore, I discuss the current state of the field and potential future trends. I argue that one such trend involves AI tools becoming more versatile.
Collapse
Affiliation(s)
- Artur Yakimovich
- Center for Advanced Systems Understanding (CASUS), Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf e. V. (HZDR), Dresden, Germany
- Department of Renal Medicine, Division of Medicine, Bladder Infection and Immunity Group (BIIG), University College London, Royal Free Hospital Campus, London, United Kingdom
- Artificial Intelligence for Life Sciences CIC, Dorset, United Kingdom
- Institute of Computer Science, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
2
|
Penhaskashi J, Sekimoto O, Chiappelli F. Permafrost viremia and immune tweening. Bioinformation 2023; 19:685-691. [PMID: 37885785 PMCID: PMC10598357 DOI: 10.6026/97320630019685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 10/28/2023] Open
Abstract
The immune system, an exquisitely regulated physiological system, utilizes a wide spectrum of soluble factors and multiple cell populations and subpopulations at diverse states of maturation to monitor and protect the organism against foreign organisms. Immune surveillance is ensured by distinguishing self-antigens from self-associated with non-self (e.g., viral) peptides presented by major histocompatibility complexes (MHC). Pathology is often identified as unregulated inflammatory responses (e.g., cytokine storm), or recognizing self as a non-self entity (i.e., auto-immunity). Artificial intelligence (AI), and in particular specific machine learning (ML) paradigms (e.g., Deep Learning [DL]) proffer powerful algorithms to better understand and more accurately predict immune responses, immune regulation and homeostasis, and immune reactivity to challenges (i.e., immune allostasis) by their intrinsic ability to interpret immune parameters, pathways and events by analyzing large amounts of complex data and drawing predictive inferences (i.e., immune tweening). We propose here that DL models play an increasingly significant role in better defining and characterizing immunological surveillance to ancient and novel virus species released by thawing permafrost.
Collapse
Affiliation(s)
- Jaden Penhaskashi
- />Division of West Valley Dental Implant Center, Encino, CA 91316, USA
| | | | - Francesco Chiappelli
- />Dental Group of Sherman Oaks, CA 91403 , USA
- />Center for the Health Sciences, UCLA, Los Angeles, CA, USA
| |
Collapse
|
3
|
Iuchi H, Kawasaki J, Kubo K, Fukunaga T, Hokao K, Yokoyama G, Ichinose A, Suga K, Hamada M. Bioinformatics approaches for unveiling virus-host interactions. Comput Struct Biotechnol J 2023; 21:1774-1784. [PMID: 36874163 PMCID: PMC9969756 DOI: 10.1016/j.csbj.2023.02.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
The coronavirus disease-2019 (COVID-19) pandemic has elucidated major limitations in the capacity of medical and research institutions to appropriately manage emerging infectious diseases. We can improve our understanding of infectious diseases by unveiling virus-host interactions through host range prediction and protein-protein interaction prediction. Although many algorithms have been developed to predict virus-host interactions, numerous issues remain to be solved, and the entire network remains veiled. In this review, we comprehensively surveyed algorithms used to predict virus-host interactions. We also discuss the current challenges, such as dataset biases toward highly pathogenic viruses, and the potential solutions. The complete prediction of virus-host interactions remains difficult; however, bioinformatics can contribute to progress in research on infectious diseases and human health.
Collapse
Affiliation(s)
- Hitoshi Iuchi
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan.,Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 169-8555, Japan
| | - Junna Kawasaki
- Faculty of Science and Engineering, Waseda University, Okubo Shinjuku-ku, Tokyo 169-8555, Japan
| | - Kento Kubo
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 169-8555, Japan.,School of Advanced Science and Engineering, Waseda University, Okubo Shinjuku-ku, Tokyo 169-8555, Japan
| | - Tsukasa Fukunaga
- Waseda Institute for Advanced Study, Waseda University, Nishi Waseda, Shinjuku-ku, Tokyo 169-0051, Japan
| | - Koki Hokao
- School of Advanced Science and Engineering, Waseda University, Okubo Shinjuku-ku, Tokyo 169-8555, Japan
| | - Gentaro Yokoyama
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 169-8555, Japan.,School of Advanced Science and Engineering, Waseda University, Okubo Shinjuku-ku, Tokyo 169-8555, Japan
| | - Akiko Ichinose
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Kanta Suga
- School of Advanced Science and Engineering, Waseda University, Okubo Shinjuku-ku, Tokyo 169-8555, Japan
| | - Michiaki Hamada
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan.,Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 169-8555, Japan.,School of Advanced Science and Engineering, Waseda University, Okubo Shinjuku-ku, Tokyo 169-8555, Japan.,Graduate School of Medicine, Nippon Medical School, Tokyo 113-8602, Japan
| |
Collapse
|
4
|
Karpuzcu BA, Türk E, Ibrahim AH, Karabulut OC, Süzek BE. Machine Learning Methods for Virus-Host Protein-Protein Interaction Prediction. Methods Mol Biol 2023; 2690:401-417. [PMID: 37450162 DOI: 10.1007/978-1-0716-3327-4_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The attachment of a virion to a respective cellular receptor on the host organism occurring through the virus-host protein-protein interactions (PPIs) is a decisive step for viral pathogenicity and infectivity. Therefore, a vast number of wet-lab experimental techniques are used to study virus-host PPIs. Taking the great number and enormous variety of virus-host PPIs and the cost as well as labor of laboratory work, however, computational approaches toward analyzing the available interaction data and predicting previously unidentified interactions have been on the rise. Among them, machine-learning-based models are getting increasingly more attention with a great body of resources and tools proposed recently.In this chapter, we first provide the methodology with major steps toward the development of a virus-host PPI prediction tool. Next, we discuss the challenges involved and evaluate several existing machine-learning-based virus-host PPI prediction tools. Finally, we describe our experience with several ensemble techniques as utilized on available prediction results retrieved from individual PPI prediction tools. Overall, based on our experience, we recognize there is still room for the development of new individual and/or ensemble virus-host PPI prediction tools that leverage existing tools.
Collapse
Affiliation(s)
- Betül Asiye Karpuzcu
- Bioinformatics Graduate Program, Graduate School of Natural and Applied Sciences, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Erdem Türk
- Bioinformatics Graduate Program, Graduate School of Natural and Applied Sciences, Muğla Sıtkı Koçman University, Muğla, Turkey
- Department of Computer Engineering, Faculty of Engineering, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Ahmad Hassan Ibrahim
- Bioinformatics Graduate Program, Graduate School of Natural and Applied Sciences, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Onur Can Karabulut
- Bioinformatics Graduate Program, Graduate School of Natural and Applied Sciences, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Barış Ethem Süzek
- Bioinformatics Graduate Program, Graduate School of Natural and Applied Sciences, Muğla Sıtkı Koçman University, Muğla, Turkey.
- Department of Computer Engineering, Faculty of Engineering, Muğla Sıtkı Koçman University, Muğla, Turkey.
| |
Collapse
|
5
|
Asim MN, Fazeel A, Ibrahim MA, Dengel A, Ahmed S. MP-VHPPI: Meta predictor for viral host protein-protein interaction prediction in multiple hosts and viruses. Front Med (Lausanne) 2022; 9:1025887. [PMID: 36465911 PMCID: PMC9709337 DOI: 10.3389/fmed.2022.1025887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/17/2022] [Indexed: 09/19/2023] Open
Abstract
Viral-host protein-protein interaction (VHPPI) prediction is essential to decoding molecular mechanisms of viral pathogens and host immunity processes that eventually help to control the propagation of viral diseases and to design optimized therapeutics. Multiple AI-based predictors have been developed to predict diverse VHPPIs across a wide range of viruses and hosts, however, these predictors produce better performance only for specific types of hosts and viruses. The prime objective of this research is to develop a robust meta predictor (MP-VHPPI) capable of more accurately predicting VHPPI across multiple hosts and viruses. The proposed meta predictor makes use of two well-known encoding methods Amphiphilic Pseudo-Amino Acid Composition (APAAC) and Quasi-sequence (QS) Order that capture amino acids sequence order and distributional information to most effectively generate the numerical representation of complete viral-host raw protein sequences. Feature agglomeration method is utilized to transform the original feature space into a more informative feature space. Random forest (RF) and Extra tree (ET) classifiers are trained on optimized feature space of both APAAC and QS order separate encoders and by combining both encodings. Further predictions of both classifiers are utilized to feed the Support Vector Machine (SVM) classifier that makes final predictions. The proposed meta predictor is evaluated over 7 different benchmark datasets, where it outperforms existing VHPPI predictors with an average performance of 3.07, 6.07, 2.95, and 2.85% in terms of accuracy, Mathews correlation coefficient, precision, and sensitivity, respectively. To facilitate the scientific community, the MP-VHPPI web server is available at https://sds_genetic_analysis.opendfki.de/MP-VHPPI/.
Collapse
Affiliation(s)
- Muhammad Nabeel Asim
- Department of Computer Science, Technical University of Kaiserslautern, Kaiserslautern, Germany
- German Research Center for Artificial Intelligence GmbH, Kaiserslautern, Germany
| | - Ahtisham Fazeel
- Department of Computer Science, Technical University of Kaiserslautern, Kaiserslautern, Germany
- German Research Center for Artificial Intelligence GmbH, Kaiserslautern, Germany
| | - Muhammad Ali Ibrahim
- Department of Computer Science, Technical University of Kaiserslautern, Kaiserslautern, Germany
- German Research Center for Artificial Intelligence GmbH, Kaiserslautern, Germany
| | - Andreas Dengel
- Department of Computer Science, Technical University of Kaiserslautern, Kaiserslautern, Germany
- German Research Center for Artificial Intelligence GmbH, Kaiserslautern, Germany
| | - Sheraz Ahmed
- German Research Center for Artificial Intelligence GmbH, Kaiserslautern, Germany
| |
Collapse
|
6
|
Lim H, Tsai CJ, Keskin O, Nussinov R, Gursoy A. HMI-PRED 2.0: a biologist-oriented web application for prediction of host-microbe protein-protein interaction by interface mimicry. Bioinformatics 2022; 38:4962-4965. [PMID: 36124958 PMCID: PMC9620825 DOI: 10.1093/bioinformatics/btac633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/05/2022] [Accepted: 09/15/2022] [Indexed: 11/19/2022] Open
Abstract
SUMMARY HMI-PRED 2.0 is a publicly available web service for the prediction of host-microbe protein-protein interaction by interface mimicry that is intended to be used without extensive computational experience. A microbial protein structure is screened against a database covering the entire available structural space of complexes of known human proteins. AVAILABILITY AND IMPLEMENTATION HMI-PRED 2.0 provides user-friendly graphic interfaces for predicting, visualizing and analyzing host-microbe interactions. HMI-PRED 2.0 is available at https://hmipred.org/.
Collapse
Affiliation(s)
- Hansaim Lim
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, NCI-Frederick, Frederick, MD 21702, USA
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, NCI-Frederick, Frederick, MD 21702, USA
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, Koç University, Istanbul 34450, Turkey
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, NCI-Frederick, Frederick, MD 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Attila Gursoy
- Department of Computer Engineering, Koç University, Istanbul 34450, Turkey
| |
Collapse
|
7
|
Kumar S, Kumar GS, Maitra SS, Malý P, Bharadwaj S, Sharma P, Dwivedi VD. Viral informatics: bioinformatics-based solution for managing viral infections. Brief Bioinform 2022; 23:6659740. [PMID: 35947964 DOI: 10.1093/bib/bbac326] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/26/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Several new viral infections have emerged in the human population and establishing as global pandemics. With advancements in translation research, the scientific community has developed potential therapeutics to eradicate or control certain viral infections, such as smallpox and polio, responsible for billions of disabilities and deaths in the past. Unfortunately, some viral infections, such as dengue virus (DENV) and human immunodeficiency virus-1 (HIV-1), are still prevailing due to a lack of specific therapeutics, while new pathogenic viral strains or variants are emerging because of high genetic recombination or cross-species transmission. Consequently, to combat the emerging viral infections, bioinformatics-based potential strategies have been developed for viral characterization and developing new effective therapeutics for their eradication or management. This review attempts to provide a single platform for the available wide range of bioinformatics-based approaches, including bioinformatics methods for the identification and management of emerging or evolved viral strains, genome analysis concerning the pathogenicity and epidemiological analysis, computational methods for designing the viral therapeutics, and consolidated information in the form of databases against the known pathogenic viruses. This enriched review of the generally applicable viral informatics approaches aims to provide an overview of available resources capable of carrying out the desired task and may be utilized to expand additional strategies to improve the quality of translation viral informatics research.
Collapse
Affiliation(s)
- Sanjay Kumar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.,Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| | - Geethu S Kumar
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh, India.,Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| | | | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i., BIOCEV Research Center, Vestec, Czech Republic
| | - Shiv Bharadwaj
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i., BIOCEV Research Center, Vestec, Czech Republic
| | - Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Vivek Dhar Dwivedi
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India.,Institute of Advanced Materials, IAAM, 59053 Ulrika, Sweden
| |
Collapse
|
8
|
Yakimovich A. Machine Learning and Artificial Intelligence for the Prediction of Host-Pathogen Interactions: A Viral Case. Infect Drug Resist 2021; 14:3319-3326. [PMID: 34456575 PMCID: PMC8385421 DOI: 10.2147/idr.s292743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/03/2021] [Indexed: 01/27/2023] Open
Abstract
The research of interactions between the pathogens and their hosts is key for understanding the biology of infection. Commencing on the level of individual molecules, these interactions define the behavior of infectious agents and the outcomes they elicit. Discovery of host-pathogen interactions (HPIs) conventionally involves a stepwise laborious research process. Yet, amid the global pandemic the urge for rapid discovery acceleration through the novel computational methodologies has become ever so poignant. This review explores the challenges of HPI discovery and investigates the efforts currently undertaken to apply the latest machine learning (ML) and artificial intelligence (AI) methodologies to this field. This includes applications to molecular and genetic data, as well as image and language data. Furthermore, a number of breakthroughs, obstacles, along with prospects of AI for host-pathogen interactions (HPI), are discussed.
Collapse
|