1
|
Wang A, Cordova M, Navarre WW. Evolutionary and functional divergence of Sfx, a plasmid-encoded H-NS homolog, underlies the regulation of IncX plasmid conjugation. mBio 2025; 16:e0208924. [PMID: 39714162 PMCID: PMC11796372 DOI: 10.1128/mbio.02089-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/14/2024] [Indexed: 12/24/2024] Open
Abstract
Conjugative plasmids are widespread among prokaryotes, highlighting their evolutionary success. Conjugation systems on most natural plasmids are repressed by default. The negative regulation of F-plasmid conjugation is partially mediated by the chromosomal nucleoid-structuring protein (H-NS). Recent bioinformatic analyses have revealed that plasmid-encoded H-NS homologs are widespread and exhibit high sequence diversity. However, the functional roles of most of these homologs and the selective forces driving their phylogenetic diversification remain unclear. In this study, we characterized the functionality and evolution of Sfx, a H-NS homolog encoded by the model IncX2 plasmid R6K. We demonstrate that Sfx, but not chromosomal H-NS, can repress R6K conjugation. Notably, we find evidence of positive selection acting on the ancestral Sfx lineage. Positively selected sites are located in the dimerization, oligomerization, and DNA-binding interfaces, many of which contribute to R6K repression activity-indicating that adaptive evolution drove the functional divergence of Sfx. We additionally show that Sfx can physically interact with various chromosomally encoded proteins, including H-NS, StpA, and Hha. Hha enhances the ability of Sfx to regulate R6K conjugation, suggesting that Sfx retained functionally important interactions with chromosomal silencing proteins. Surprisingly, the loss of Sfx does not negatively affect the stability or dissemination of R6K in laboratory conditions, reflecting the complexity of selective pressures favoring conjugation repression. Overall, our study sheds light on the functional and evolutionary divergence of a plasmid-borne H-NS-like protein, highlighting how these loosely specific DNA-binding proteins evolved to specifically regulate different plasmid functions.IMPORTANCEConjugative plasmids play a crucial role in spreading antimicrobial resistance and virulence genes. Most natural conjugative plasmids conjugate only under specific conditions. Therefore, studying the molecular mechanisms underlying conjugation regulation is essential for understanding antimicrobial resistance and pathogen evolution. In this study, we characterized the conjugation regulation of the model IncX plasmid R6K. We discovered that Sfx, a H-NS homolog carried by the plasmid, represses conjugation. Molecular evolutionary analyses combined with gain-of-function experiments indicate that positive selection underlies the conjugation repression activity of Sfx. Additionally, we demonstrate that the loss of Sfx does not adversely affect R6K maintenance under laboratory conditions, suggesting additional selective forces favoring Sfx carriage. Overall, this work underscores the impact of protein diversification on plasmid biology, enhancing our understanding of how molecular evolution affects broader plasmid ecology.
Collapse
Affiliation(s)
- Avril Wang
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Martha Cordova
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
2
|
Oliveira M, Antunes W, Mota S, Madureira-Carvalho Á, Dinis-Oliveira RJ, Dias da Silva D. An Overview of the Recent Advances in Antimicrobial Resistance. Microorganisms 2024; 12:1920. [PMID: 39338594 PMCID: PMC11434382 DOI: 10.3390/microorganisms12091920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Antimicrobial resistance (AMR), frequently considered a major global public health threat, requires a comprehensive understanding of its emergence, mechanisms, advances, and implications. AMR's epidemiological landscape is characterized by its widespread prevalence and constantly evolving patterns, with multidrug-resistant organisms (MDROs) creating new challenges every day. The most common mechanisms underlying AMR (i.e., genetic mutations, horizontal gene transfer, and selective pressure) contribute to the emergence and dissemination of new resistant strains. Therefore, mitigation strategies (e.g., antibiotic stewardship programs-ASPs-and infection prevention and control strategies-IPCs) emphasize the importance of responsible antimicrobial use and surveillance. A One Health approach (i.e., the interconnectedness of human, animal, and environmental health) highlights the necessity for interdisciplinary collaboration and holistic strategies in combating AMR. Advancements in novel therapeutics (e.g., alternative antimicrobial agents and vaccines) offer promising avenues in addressing AMR challenges. Policy interventions at the international and national levels also promote ASPs aiming to regulate antimicrobial use. Despite all of the observed progress, AMR remains a pressing concern, demanding sustained efforts to address emerging threats and promote antimicrobial sustainability. Future research must prioritize innovative approaches and address the complex socioecological dynamics underlying AMR. This manuscript is a comprehensive resource for researchers, policymakers, and healthcare professionals seeking to navigate the complex AMR landscape and develop effective strategies for its mitigation.
Collapse
Affiliation(s)
- Manuela Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Research Unit on Applied Molecular Biosciences, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Wilson Antunes
- Instituto Universitário Militar, CINAMIL, Unidade Militar Laboratorial de Defesa Biológica e Química, Avenida Doutor Alfredo Bensaúde, 4 piso, do LNM, 1849-012 Lisbon, Portugal
| | - Salete Mota
- ULSEDV—Unidade Local De Saúde De Entre Douro Vouga, Unidade de Santa Maria da Feira e Hospital S. Sebastião, Rua Dr. Cândido Pinho, 4520-211 Santa Maria da Feira, Portugal
| | - Áurea Madureira-Carvalho
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Applied Molecular Biosciences Unit, Forensics and Biomedical Sciences Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
- Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Research Unit on Applied Molecular Biosciences, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
- Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- FOREN—Forensic Science Experts, Avenida Dr. Mário Moutinho 33-A, 1400-136 Lisbon, Portugal
| | - Diana Dias da Silva
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Applied Molecular Biosciences Unit, Forensics and Biomedical Sciences Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
- REQUIMTE/LAQV, ESS, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
3
|
Ortiz Charneco G, Kelleher P, Buivydas A, de Waal PP, van Rijswijck IM, van Peij NN, Mahony J, Van Sinderen D. Transcriptional control of two distinct lactococcal plasmid-encoded conjugation systems. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100224. [PMID: 38371911 PMCID: PMC10873654 DOI: 10.1016/j.crmicr.2024.100224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024] Open
Abstract
Lactococcal conjugative plasmids are poorly characterized compared to those harbored by numerous other Gram-positive bacteria, despite their significance in dairy fermentations and starter culture development. Furthermore, the transcriptional landscape of these lactococcal conjugation systems and their regulation have not been studied in any detail. Lactococcal plasmids pNP40 and pUC11B possess two genetically distinct and prevalent conjugation systems. Here, we describe the detailed transcriptional analysis of the pNP40 and pUC11B conjugation-associated gene clusters, revealing three and five promoters, respectively, for which the corresponding transcriptional start sites were identified. Regulation of several of these promoters, and therefore conjugation, is shown to involve the individual or concerted activities of the corresponding relaxase and transcriptional repressor(s) encoded by each conjugative plasmid. This work highlights how the conjugative potential of these systems may be unlocked, with significant implications for the starter culture and food fermentation industry.
Collapse
Affiliation(s)
- Guillermo Ortiz Charneco
- School of Microbiology & APC Microbiome Ireland, University College Cork, Western Road, Cork, Ireland
| | - Philip Kelleher
- School of Microbiology & APC Microbiome Ireland, University College Cork, Western Road, Cork, Ireland
| | - Andrius Buivydas
- School of Microbiology & APC Microbiome Ireland, University College Cork, Western Road, Cork, Ireland
| | - Paul P. de Waal
- dsm-firmenich; Taste, Texture & Health, Center for Food Innovation, Alexander Fleminglaan 1, 2613 AX Delft, the Netherlands
| | - Irma M.H. van Rijswijck
- dsm-firmenich; Taste, Texture & Health, Center for Food Innovation, Alexander Fleminglaan 1, 2613 AX Delft, the Netherlands
| | - Noël N.M.E. van Peij
- dsm-firmenich; Taste, Texture & Health, Center for Food Innovation, Alexander Fleminglaan 1, 2613 AX Delft, the Netherlands
| | - Jennifer Mahony
- School of Microbiology & APC Microbiome Ireland, University College Cork, Western Road, Cork, Ireland
| | - Douwe Van Sinderen
- School of Microbiology & APC Microbiome Ireland, University College Cork, Western Road, Cork, Ireland
| |
Collapse
|
4
|
Ortiz Charneco G, Kelleher P, Buivydas A, Dashko S, de Waal PP, van Peij NNME, Roberts RJ, Mahony J, van Sinderen D. Delineation of a lactococcal conjugation system reveals a restriction-modification evasion system. Microb Biotechnol 2023; 16:1250-1263. [PMID: 36942662 DOI: 10.1111/1751-7915.14221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 03/23/2023] Open
Abstract
Plasmid pUC11B is a 49.3-kb plasmid harboured by the fermented meat isolate Lactococcus lactis subsp. lactis UC11. Among other features, pUC11B encodes a pMRC01-like conjugation system and tetracycline-resistance. In this study, we demonstrate that this plasmid can be conjugated at high frequencies to recipient strains. Mutational analysis of the 22 genes encompassing the presumed pUC11B conjugation cluster revealed the presence of several genes with essential conjugation functions, as well as a gene, trsR, encoding a putative transcriptional repressor of this conjugation cluster. Furthermore, plasmid pUC11B encodes an anti-restriction protein, TrsAR, which facilitates higher conjugation frequencies when pUC11B is transferred into recipient strains containing Type II or Type III RM systems. These findings demonstrate how RM mechanisms can be circumvented when they act as a biological barrier for conjugation events.
Collapse
Affiliation(s)
| | - Philip Kelleher
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Andrius Buivydas
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Sofia Dashko
- DSM Food and Beverage, Center for Food Innovation, Delft, The Netherlands
| | - Paul P de Waal
- DSM Food and Beverage, Center for Food Innovation, Delft, The Netherlands
| | | | | | - Jennifer Mahony
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Douwe van Sinderen
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
5
|
Bernardo N, Crespo I, Cuppari A, Meijer WJJ, Boer DR. A tetramerization domain in prokaryotic and eukaryotic transcription regulators homologous to p53. Acta Crystallogr D Struct Biol 2023; 79:259-267. [PMID: 36876435 PMCID: PMC9986798 DOI: 10.1107/s2059798323001298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Transcriptional regulation usually requires the action of several proteins that either repress or activate a promotor of an open reading frame. These proteins can counteract each other, thus allowing tight regulation of the transcription of the corresponding genes, where tight repression is often linked to DNA looping or cross-linking. Here, the tetramerization domain of the bacterial gene repressor Rco from Bacillus subtilis plasmid pLS20 (RcopLS20) has been identified and its structure is shown to share high similarity to the tetramerization domain of the well known p53 family of human tumor suppressors, despite lacking clear sequence homology. In RcopLS20, this tetramerization domain is responsible for inducing DNA looping, a process that involves multiple tetramers. In accordance, it is shown that RcopLS20 can form octamers. This domain was named TetDloop and its occurrence was identified in other Bacillus species. The TetDloop fold was also found in the structure of a transcriptional repressor from Salmonella phage SPC32H. It is proposed that the TetDloop fold has evolved through divergent evolution and that the TetDloop originates from a common ancestor predating the occurrence of multicellular life.
Collapse
Affiliation(s)
- Nerea Bernardo
- Experiments Division, ALBA Synchrotron Light Source, Carrer de la Llum 2–26, 08290 Cerdanyola del Vallès, Catalunya, Spain
| | - Isidro Crespo
- Experiments Division, ALBA Synchrotron Light Source, Carrer de la Llum 2–26, 08290 Cerdanyola del Vallès, Catalunya, Spain
| | - Anna Cuppari
- Experiments Division, ALBA Synchrotron Light Source, Carrer de la Llum 2–26, 08290 Cerdanyola del Vallès, Catalunya, Spain
| | - Wilfried J. J. Meijer
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC–UAM), Universidad Autónoma de Madrid, Calle Nicolás Cabrera 1, Canto Blanco, 28049 Madrid, Spain
| | - D. Roeland Boer
- Experiments Division, ALBA Synchrotron Light Source, Carrer de la Llum 2–26, 08290 Cerdanyola del Vallès, Catalunya, Spain
| |
Collapse
|
6
|
Amatsu R, Mori K, Ishikawa S, Meijer WJJ, Yoshida KI. A New Tool for the Flexible Genetic Manipulation of Geobacillus kaustophilus. Bio Protoc 2022; 12:e4502. [PMID: 36213108 PMCID: PMC9501723 DOI: 10.21769/bioprotoc.4502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/08/2022] [Accepted: 07/25/2022] [Indexed: 12/29/2022] Open
Abstract
Geobacillus kaustophilus , a thermophilic Gram-positive bacterium, is an attractive host for the development of high-temperature bioprocesses. However, its reluctance against genetic manipulation by standard methodologies hampers its exploitation. Here, we describe a simple methodology in which an artificial DNA segment on the chromosome of Bacillus subtilis can be transferred via pLS20-mediated conjugation resulting in subsequent integration in the genome of G. kaustophilus. Therefore, we have developed a transformation strategy to design an artificial DNA segment on the chromosome of B. subtilis and introduce it into G. kaustophilus . The artificial DNA segment can be freely designed by taking advantage of the plasticity of the B. subtilis genome and combined with the simplicity of pLS20 conjugation transfer. This transformation strategy would adapt to various Gram-positive bacteria other than G. kaustophilus . Graphical abstract.
Collapse
Affiliation(s)
- Ryotaro Amatsu
- Department of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Kotaro Mori
- Department of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Shu Ishikawa
- Department of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Wilfried J. J. Meijer
- Centro de Biología Molecular ‘Severo Ochoa’, CSIC-UAM Universidad Autónoma Madrid, Canto Blanco, 28049, Madrid, Spain
| | - Ken-Ichi Yoshida
- Department of Science, Technology and Innovation, Kobe University, Kobe, Japan
,
*For correspondence:
| |
Collapse
|
7
|
Gurinovich AS, Titok MA. Molecular Genetic and Functional Analysis of the Conjugation System of the pBS72 Plasmid from Bacillus subtilis Environmental Isolates. Microbiology (Reading) 2022. [DOI: 10.1134/s002626172230018x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
8
|
Sulser S, Vucicevic A, Bellini V, Moritz R, Delavat F, Sentchilo V, Carraro N, van der Meer JR. A bistable prokaryotic differentiation system underlying development of conjugative transfer competence. PLoS Genet 2022; 18:e1010286. [PMID: 35763548 PMCID: PMC9286271 DOI: 10.1371/journal.pgen.1010286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/15/2022] [Accepted: 06/08/2022] [Indexed: 12/21/2022] Open
Abstract
The mechanisms and impact of horizontal gene transfer processes to distribute gene functions with potential adaptive benefit among prokaryotes have been well documented. In contrast, little is known about the life-style of mobile elements mediating horizontal gene transfer, whereas this is the ultimate determinant for their transfer fitness. Here, we investigate the life-style of an integrative and conjugative element (ICE) within the genus Pseudomonas that is a model for a widespread family transmitting genes for xenobiotic compound metabolism and antibiotic resistances. Previous work showed bimodal ICE activation, but by using single cell time-lapse microscopy coupled to combinations of chromosomally integrated single copy ICE promoter-driven fluorescence reporters, RNA sequencing and mutant analysis, we now describe the complete regulon leading to the arisal of differentiated dedicated transfer competent cells. The regulon encompasses at least three regulatory nodes and five (possibly six) further conserved gene clusters on the ICE that all become expressed under stationary phase conditions. Time-lapse microscopy indicated expression of two regulatory nodes (i.e., bisR and alpA-bisDC) to precede that of the other clusters. Notably, expression of all clusters except of bisR was confined to the same cell subpopulation, and was dependent on the same key ICE regulatory factors. The ICE thus only transfers from a small fraction of cells in a population, with an estimated proportion of between 1.7–4%, which express various components of a dedicated transfer competence program imposed by the ICE, and form the centerpiece of ICE conjugation. The components mediating transfer competence are widely conserved, underscoring their selected fitness for efficient transfer of this class of mobile elements. Horizontal gene transfer processes among prokaryotes have raised wide interest, which is attested by broad public health concern of rapid spread of antibiotic resistances. However, we typically take for granted that horizontal transfer is the result of some underlying spontaneous low frequency event, but this is not necessarily the case. As we show here, mobile genetic elements from the class of integrative and conjugative elements (ICEs) impose a coordinated program on the host cell in order to transfer, leading to an exclusive differentiated set of transfer competent cells. We base our conclusions on single cell microscopy studies to compare the rare activation of ICE promoters in individual cells in bacterial populations, and on mutant and RNA-seq analysis to show their dependency on ICE factors. This is an important finding because it implies that conjugation itself is subject to natural selection, which would lead to selection of fitter elements that transfer better or become more widespread.
Collapse
Affiliation(s)
- Sandra Sulser
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Andrea Vucicevic
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Veronica Bellini
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Roxane Moritz
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - François Delavat
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Vladimir Sentchilo
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Carraro
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Jan Roelof van der Meer
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
9
|
Insights in the Complex DegU, DegS, and Spo0A Regulation System of Paenibacillus polymyxa by CRISPR-Cas9-Based Targeted Point Mutations. Appl Environ Microbiol 2022; 88:e0016422. [PMID: 35588272 PMCID: PMC9195935 DOI: 10.1128/aem.00164-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite being unicellular organisms, bacteria undergo complex regulation mechanisms which coordinate different physiological traits. Among others, DegU, DegS, and Spo0A are the pleiotropic proteins which govern various cellular responses and behaviors. However, the functions and regulatory networks between these three proteins are rarely described in the highly interesting bacterium Paenibacillus polymyxa. In this study, we investigate the roles of DegU, DegS, and Spo0A by introduction of targeted point mutations facilitated by a CRISPR-Cas9-based system. In total, five different mutant strains were generated, the single mutants DegU Q218*, DegS L99F, and Spo0A A257V, the double mutant DegU Q218* DegS L99F, and the triple mutant DegU Q218* DegS L99F Spo0A A257V. Characterization of the wild-type and the engineered strains revealed differences in swarming behavior, conjugation efficiency, sporulation, and viscosity formation of the culture broth. In particular, the double mutant DegU Q218* DegS L99F showed a significant increase in conjugation efficiency as well as a stable exopolysaccharides formation. Furthermore, we highlight similarities and differences in the roles of DegU, DegS, and Spo0A between P. polymyxa and related species. Finally, this study provides novel insights into the complex regulatory system of P. polymyxa DSM 365. IMPORTANCE To date, only limited knowledge is available on how complex cellular behaviors are regulated in P. polymyxa. In this study, we investigate several regulatory proteins which play a role in governing different physiological traits. Precise targeted point mutations were introduced to their respective genes by employing a highly efficient CRISPR-Cas9-based system. Characterization of the strains revealed some similarities, but also differences, to the model bacterium Bacillus subtilis with regard to the regulation of cellular behaviors. Furthermore, we identified several strains which have superior performance over the wild-type. The applicability of the CRISPR-Cas9 system as a robust genome editing tool, in combination with the engineered strain with increased genetic accessibility, would boost further research in P. polymyxa and support its utilization for biotechnological applications. Overall, our study provides novel insights, which will be of importance in understanding how multiple cellular processes are regulated in Paenibacillus species.
Collapse
|
10
|
Mori K, Fukui K, Amatsu R, Ishikawa S, Verrone V, Wipat A, Meijer WJJ, Yoshida KI. A novel method for transforming Geobacillus kaustophilus with a chromosomal segment of Bacillus subtilis transferred via pLS20-dependent conjugation. Microb Cell Fact 2022; 21:34. [PMID: 35260160 PMCID: PMC8903633 DOI: 10.1186/s12934-022-01759-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/19/2022] [Indexed: 12/05/2022] Open
Abstract
Background Geobacillus kaustophilus is a thermophilic Gram-positive bacterium. Methods for its transformation are still under development. Earlier studies have demonstrated that pLS20catΔoriT mobilized the resident mobile plasmids from Bacillus subtilis to G. kaustophilus and transferred long segments of chromosome from one cell to another between B. subtilis. Results In this study, we applied mobilization of the B. subtilis chromosome mediated by pLS20catΔoriT to transform G. kaustophilus. We constructed a gene cassette to be integrated into G. kaustophilus and designed it within the B. subtilis chromosome. The pLS20catΔoriT-mediated conjugation successfully transferred the gene cassette from the B. subtilis chromosome into the G. kaustophilus allowing for the desired genetic transformation. Conclusions This transformation approach described here will provide a new tool to facilitate the flexible genetic manipulation of G. kaustophilus. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01759-8.
Collapse
Affiliation(s)
- Kotaro Mori
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657 5801, Japan
| | - Kaho Fukui
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657 5801, Japan
| | - Ryotaro Amatsu
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657 5801, Japan
| | - Shu Ishikawa
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657 5801, Japan
| | - Valeria Verrone
- School of Computing, Newcastle University, 1 Science Square, Science Central, Newcastle upon Tyne, NE4 5TG, UK
| | - Anil Wipat
- School of Computing, Newcastle University, 1 Science Square, Science Central, Newcastle upon Tyne, NE4 5TG, UK
| | - Wilfried J J Meijer
- Centro de Biología Molecular 'Severo Ochoa', CSIC-UAM Universidad Autónoma Madrid, Canto Blanco, 28049, Madrid, Spain
| | - Ken-Ichi Yoshida
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657 5801, Japan.
| |
Collapse
|
11
|
Miguel-Arribas A, Wu LJ, Michaelis C, Yoshida KI, Grohmann E, Meijer WJJ. Conjugation Operons in Gram-Positive Bacteria with and without Antitermination Systems. Microorganisms 2022; 10:microorganisms10030587. [PMID: 35336162 PMCID: PMC8955417 DOI: 10.3390/microorganisms10030587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/01/2023] Open
Abstract
Genes involved in the same cellular process are often clustered together in an operon whose expression is controlled by an upstream promoter. Generally, the activity of the promoter is strictly controlled. However, spurious transcription undermines this strict regulation, particularly affecting large operons. The negative effects of spurious transcription can be mitigated by the presence of multiple terminators inside the operon, in combination with an antitermination system. Antitermination systems modify the transcription elongation complexes and enable them to bypass terminators. Bacterial conjugation is the process by which a conjugative DNA element is transferred from a donor to a recipient cell. Conjugation involves many genes that are mostly organized in one or a few large operons. It has recently been shown that many conjugation operons present on plasmids replicating in Gram-positive bacteria possess a bipartite antitermination system that allows not only many terminators inside the conjugation operon to be bypassed, but also the differential expression of a subset of genes. Here, we show that some conjugation operons on plasmids belonging to the Inc18 family of Gram-positive broad host-range plasmids do not possess an antitermination system, suggesting that the absence of an antitermination system may have advantages. The possible (dis)advantages of conjugation operons possessing (or not) an antitermination system are discussed.
Collapse
Affiliation(s)
- Andrés Miguel-Arribas
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Instituto de Biología Molecular Eladio Viñuela (CSIC), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain;
| | - Ling Juan Wu
- Centre for Bacterial Cell Biology, Medical Faculty, Biosciences Institute, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, UK;
| | - Claudia Michaelis
- School of Life Sciences and Technology, Berlin University of Applied Sciences, Seestrasse 64, 13347 Berlin, Germany;
| | - Ken-ichi Yoshida
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan;
| | - Elisabeth Grohmann
- School of Life Sciences and Technology, Berlin University of Applied Sciences, Seestrasse 64, 13347 Berlin, Germany;
- Correspondence: (E.G.); (W.J.J.M.); Tel.: +49-30-4504-3942 (E.G.); +34-91-196-4539 (W.J.J.M.)
| | - Wilfried J. J. Meijer
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Instituto de Biología Molecular Eladio Viñuela (CSIC), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain;
- Correspondence: (E.G.); (W.J.J.M.); Tel.: +49-30-4504-3942 (E.G.); +34-91-196-4539 (W.J.J.M.)
| |
Collapse
|
12
|
Val-Calvo J, Miguel-Arribas A, Abia D, Wu LJ, Meijer WJJ. pLS20 is the archetype of a new family of conjugative plasmids harboured by Bacillus species. NAR Genom Bioinform 2021; 3:lqab096. [PMID: 34729475 PMCID: PMC8557374 DOI: 10.1093/nargab/lqab096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/03/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Conjugation plays important roles in genome plasticity, adaptation and evolution but is also the major horizontal gene-transfer route responsible for spreading toxin, virulence and antibiotic resistance genes. A better understanding of the conjugation process is required for developing drugs and strategies to impede the conjugation-mediated spread of these genes. So far, only a limited number of conjugative elements have been studied. For most of them, it is not known whether they represent a group of conjugative elements, nor about their distribution patterns. Here we show that pLS20 from the Gram-positive bacterium Bacillus subtilis is the prototype conjugative plasmid of a family of at least 35 members that can be divided into four clades, and which are harboured by different Bacillus species found in different global locations and environmental niches. Analyses of their phylogenetic relationship and their conjugation operons have expanded our understanding of a family of conjugative plasmids of Gram-positive origin.
Collapse
Affiliation(s)
- Jorge Val-Calvo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Canto Blanco, 28049, Madrid, Spain
| | - Andrés Miguel-Arribas
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Canto Blanco, 28049, Madrid, Spain
| | - David Abia
- Bioinformatics Facility, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Canto Blanco, 28049, Madrid, Spain
| | - Ling Juan Wu
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4AX, UK
| | - Wilfried J J Meijer
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Canto Blanco, 28049, Madrid, Spain
| |
Collapse
|
13
|
Mori K, Verrone V, Amatsu R, Fukui K, Meijer WJJ, Ishikawa S, Wipat A, Yoshida KI. Assessment of Bacillus subtilis Plasmid pLS20 Conjugation in the Absence of Quorum Sensing Repression. Microorganisms 2021; 9:microorganisms9091931. [PMID: 34576826 PMCID: PMC8470214 DOI: 10.3390/microorganisms9091931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 12/21/2022] Open
Abstract
Bacillus subtilis conjugative plasmid pLS20 uses a quorum-sensing mechanism to control expression levels of its conjugation genes, involving the repressor RcopLS20, the anti-repressor RappLS20, and the signaling peptide Phr*pLS20. In previous studies, artificial overexpression of rappLS20 in the donor cells was shown to enhance conjugation efficiency. However, we found that the overexpression of rappLS20 led to various phenotypic traits, including cell aggregation and death, which might have affected the correct determination of the conjugation efficiency when determined by colony formation assay. In the current study, conjugation efficiencies were determined under different conditions using a two-color fluorescence-activated flow cytometry method and measuring a single-round of pLS20-mediated transfer of a mobilizable plasmid. Under standard conditions, the conjugation efficiency obtained by fluorescence-activated flow cytometry was 23-fold higher than that obtained by colony formation. Furthermore, the efficiency difference increased to 45-fold when rappLS20 was overexpressed.
Collapse
Affiliation(s)
- Kotaro Mori
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; (K.M.); (R.A.); (K.F.); (S.I.)
| | - Valeria Verrone
- School of Computing, Newcastle University, 1 Science Square, Science Central, Newcastle upon Tyne NE4 5TG, UK; (V.V.); (A.W.)
| | - Ryotaro Amatsu
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; (K.M.); (R.A.); (K.F.); (S.I.)
| | - Kaho Fukui
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; (K.M.); (R.A.); (K.F.); (S.I.)
| | - Wilfried J. J. Meijer
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain;
| | - Shu Ishikawa
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; (K.M.); (R.A.); (K.F.); (S.I.)
| | - Anil Wipat
- School of Computing, Newcastle University, 1 Science Square, Science Central, Newcastle upon Tyne NE4 5TG, UK; (V.V.); (A.W.)
| | - Ken-ichi Yoshida
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; (K.M.); (R.A.); (K.F.); (S.I.)
- Correspondence: ; Tel.: +81-78-803-5891
| |
Collapse
|
14
|
Ortiz Charneco G, Kelleher P, Buivydas A, Streekstra H, van Themaat EVL, de Waal PP, Mahony J, van Sinderen D. Genetic Dissection of a Prevalent Plasmid-Encoded Conjugation System in Lactococcus lactis. Front Microbiol 2021; 12:680920. [PMID: 34122391 PMCID: PMC8194271 DOI: 10.3389/fmicb.2021.680920] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/20/2021] [Indexed: 01/02/2023] Open
Abstract
Plasmid pNP40, which was first identified nearly 40 years ago in Lactococcus lactis subsp. lactis biovar diacetylactis DRC3, encodes functions such as heavy metal-, bacteriophage-, and nisin-resistance, as well as plasmid transfer ability by conjugation. Here, we report an optimized conjugation protocol for this plasmid, yielding a transfer frequency that is approximately 4,000-fold higher than those previously reported in literature, while we also observed high-frequency plasmid co-mobilization. Individual mutations in 18 genes that encompass the presumed conjugation cluster of pNP40 were generated using ssDNA recombineering to evaluate the role of each gene in the conjugation process. A possible transcriptional repressor of this conjugation cluster, the product of the traR gene, was identified in this manner. This mutational analysis, paired with bioinformatic predictions as based on sequence and structural similarities, allowed us to generate a preliminary model of the pNP40 conjugation machinery.
Collapse
Affiliation(s)
| | - Philip Kelleher
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Andrius Buivydas
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | | | | | - Jennifer Mahony
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Douwe van Sinderen
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
15
|
Miguel-Arribas A, Val-Calvo J, Gago-Córdoba C, Izquierdo JM, Abia D, Wu LJ, Errington J, Meijer WJJ. A novel bipartite antitermination system widespread in conjugative elements of Gram-positive bacteria. Nucleic Acids Res 2021; 49:5553-5567. [PMID: 33999173 PMCID: PMC8191782 DOI: 10.1093/nar/gkab360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/09/2021] [Accepted: 04/23/2021] [Indexed: 11/18/2022] Open
Abstract
Transcriptional regulation allows adaptive and coordinated gene expression, and is essential for life. Processive antitermination systems alter the transcription elongation complex to allow the RNA polymerase to read through multiple terminators in an operon. Here, we describe the discovery of a novel bipartite antitermination system that is widespread among conjugative elements from Gram-positive bacteria, which we named conAn. This system is composed of a large RNA element that exerts antitermination, and a protein that functions as a processivity factor. Besides allowing coordinated expression of very long operons, we show that these systems allow differential expression of genes within an operon, and probably contribute to strict regulation of the conjugation genes by minimizing the effects of spurious transcription. Mechanistic features of the conAn system are likely to decisively influence its host range, with important implications for the spread of antibiotic resistance and virulence genes.
Collapse
Affiliation(s)
- Andrés Miguel-Arribas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain
| | - Jorge Val-Calvo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain
| | - César Gago-Córdoba
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain
| | - José M Izquierdo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain
| | - David Abia
- Bioinformatics Facility, Centro de Biología Molecular "Severo Ochoa", (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain
| | - Ling Juan Wu
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Richardson Road, Newcastle Upon Tyne, NE2 4AX, UK
| | - Jeff Errington
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Richardson Road, Newcastle Upon Tyne, NE2 4AX, UK
| | - Wilfried J J Meijer
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain
| |
Collapse
|