1
|
Chen Y, Li Y, Li P, Li X, Zhao S, Zuo Z. Catching CRISPR-Cas9 in Action. J Chem Theory Comput 2025; 21:5023-5036. [PMID: 40323736 DOI: 10.1021/acs.jctc.5c00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
CRISPR-Cas9 has revolutionized genome editing, yet its structural dynamics and functional properties remain incompletely understood, partly due to limited atomic-level characterization of its active conformation with a full R-loop. Capitalizing on recent advances in Cas9 structural determination, we constructed a catalytic-state Cas9 model bound to a bona fide R-loop and performed an integrated computational investigation. Our molecular dynamics simulations reveal substantial conformational heterogeneity in the PAM (protospacer-adjacent motif)-distal nontarget DNA strand and adjacent Cas9 regions, leading to dynamically fluctuating interactions, thereby challenging experimental resolution of the full R-loop complex. Comparative analysis highlights a conformational barrier restricting final activation of the HNH nuclease domain, suggesting that strategic modulation of HNH interactions on its two sides could enhance cleavage efficiency. Furthermore, quantum mechanics/molecular mechanics simulations indicate that with H983 protonated at Nε, the RuvC domain favors a phosphate-mediated over a histidine-mediated pathway for nontarget strand cleavage. Additionally, we identify an alternative HNH-mediated target strand cleavage pathway, involving a water nucleophile aligned at the 5' side of the scissile phosphate. Inspired by the basic residue ladder observed in RuvC, we propose extending a similar ladder in HNH to strengthen DNA binding and catalytic activity. Our study provides critical insights into Cas9 structure, dynamics, and catalysis, laying a foundation for the rational design of next-generation CRISPR-Cas9 systems with optimized specificity-efficiency balance.
Collapse
Affiliation(s)
- Yingjie Chen
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Yuanhao Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Penghai Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Xin Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Shuxin Zhao
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Zhicheng Zuo
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
2
|
Van R, Pan X, Rostami S, Liu J, Agarwal PK, Brooks B, Rajan R, Shao Y. Exploring CRISPR-Cas9 HNH-Domain-Catalyzed DNA Cleavage Using Accelerated Quantum Mechanical Molecular Mechanical Free Energy Simulation. Biochemistry 2025; 64:289-299. [PMID: 39680038 PMCID: PMC12005057 DOI: 10.1021/acs.biochem.4c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The target DNA (tDNA) cleavage catalyzed by the CRISPR Cas9 enzyme is a critical step in the Cas9-based genome editing technologies. Previously, the tDNA cleavage from an active SpyCas9 enzyme conformation was modeled by Palermo and co-workers (Nierzwicki et al., Nat. Catal. 2022 5, 912) using ab initio quantum mechanical molecular mechanical (ai-QM/MM) free energy simulations, where the free energy barrier was found to be more favorable than that from a pseudoactive enzyme conformation. In this work, we performed ai-QM/MM simulations based on another catalytically active conformation (PDB 7Z4J) of the Cas9 HNH domain from cryo-electron microscopy experiments. For the wildtype enzyme, we acquired a free energy profile for the tDNA cleavage that is largely consistent with the previous report. Furthermore, we explored the role of the active-site K866 residue on the catalytic efficiency by modeling the K866A mutant and found that the K866A mutation increased the reaction free energy barrier, which is consistent with the experimentally observed reduction in the enzyme activity.
Collapse
Affiliation(s)
- Richard Van
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Pkwy, Norman, OK 73019, United States
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Xiaoliang Pan
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Pkwy, Norman, OK 73019, United States
| | - Saadi Rostami
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Pkwy, Norman, OK 73019, United States
| | - Jin Liu
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Pratul K. Agarwal
- High Performance Computing Center, Oklahoma State University, 106 Math Sciences, Stillwater, OK 74078, United States
| | - Bernard Brooks
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Rakhi Rajan
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Pkwy, Norman, OK 73019, United States
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Pkwy, Norman, OK 73019, United States
| |
Collapse
|
3
|
Ganguly C, Rostami S, Long K, Aribam SD, Rajan R. Unity among the diverse RNA-guided CRISPR-Cas interference mechanisms. J Biol Chem 2024; 300:107295. [PMID: 38641067 PMCID: PMC11127173 DOI: 10.1016/j.jbc.2024.107295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024] Open
Abstract
CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems are adaptive immune systems that protect bacteria and archaea from invading mobile genetic elements (MGEs). The Cas protein-CRISPR RNA (crRNA) complex uses complementarity of the crRNA "guide" region to specifically recognize the invader genome. CRISPR effectors that perform targeted destruction of the foreign genome have emerged independently as multi-subunit protein complexes (Class 1 systems) and as single multi-domain proteins (Class 2). These different CRISPR-Cas systems can cleave RNA, DNA, and protein in an RNA-guided manner to eliminate the invader, and in some cases, they initiate programmed cell death/dormancy. The versatile mechanisms of the different CRISPR-Cas systems to target and destroy nucleic acids have been adapted to develop various programmable-RNA-guided tools and have revolutionized the development of fast, accurate, and accessible genomic applications. In this review, we present the structure and interference mechanisms of different CRISPR-Cas systems and an analysis of their unified features. The three types of Class 1 systems (I, III, and IV) have a conserved right-handed helical filamentous structure that provides a backbone for sequence-specific targeting while using unique proteins with distinct mechanisms to destroy the invader. Similarly, all three Class 2 types (II, V, and VI) have a bilobed architecture that binds the RNA-DNA/RNA hybrid and uses different nuclease domains to cleave invading MGEs. Additionally, we highlight the mechanistic similarities of CRISPR-Cas enzymes with other RNA-cleaving enzymes and briefly present the evolutionary routes of the different CRISPR-Cas systems.
Collapse
Affiliation(s)
- Chhandosee Ganguly
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Saadi Rostami
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Kole Long
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Swarmistha Devi Aribam
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Rakhi Rajan
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA.
| |
Collapse
|
4
|
Zhao S, Liu J, Zuo Z. Secondary Conformational Checkpoint in CRISPR-Cas9. J Chem Theory Comput 2024; 20:3440-3448. [PMID: 38625092 DOI: 10.1021/acs.jctc.4c00120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
A specific checkpoint between target DNA binding and cleavage primarily governs the precision of Cas9 gene editing. Although various CRISPR-Cas9 variants have been developed to improve DNA cleavage accuracy, we still lack a comprehensive understanding of how they work at the molecular level. Herein, we have focused on studying the late-stage conformational transitions of Cas9 and an evolved Cas9 mutant (evoCas9) that start from the precleavage state. Our submilliseconds of dynamic simulations reveal that the presence of base mismatches leads the HNH nuclease domain of Cas9 to alter its principal functional modes of motion, thereby impairing its conformational activation. This observation suggests the existence of a secondary conformational checkpoint that fine-tunes the final DNA cleavage activation. Remarkably, evoCas9 is prone to deviating from the normal activation pathway with base mismatches. This is characterized by a noticeable shift in the positioning of the HNH domain and a significantly perturbed allosteric communication network within the enzyme. Therefore, the mutations evolved in evoCas9 also reinforce the secondary checkpoint in addition to the previously identified primary checkpoint, collectively ensuring this variant's high gene-editing accuracy. This mechanism should also apply to other Cas9-guide RNA variants with enhanced fidelity.
Collapse
Affiliation(s)
- Shuxin Zhao
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Jin Liu
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Zhicheng Zuo
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
5
|
Evmenov K, Pustogarov N, Panteleev D, Safin A, Alkalaeva E. An Efficient Expression and Purification Protocol for SpCas9 Nuclease and Evaluation of Different Delivery Methods of Ribonucleoprotein. Int J Mol Sci 2024; 25:1622. [PMID: 38338898 PMCID: PMC10855156 DOI: 10.3390/ijms25031622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 system is a revolutionary tool for precise genome editing across various cell types. Ribonucleoproteins (RNPs), encompassing the Cas9 protein and guide RNA (gRNA), have emerged as a promising technique due to their increased specificity and reduced off-target effects. This method eliminates the need for plasmid DNA introduction, thereby preventing potential integration of foreign DNA into the target cell genome. Given the requirement for large quantities of highly purified protein in various Cas9 studies, we present an efficient and simple method for the preparation of recombinant Streptococcus pyogenes Cas9 (SpCas9) protein. This method leverages the Small Ubiquitin Like Modifier(SUMO) tag system, which includes metal-affinity chromatography followed by anion-exchange chromatography purification. Furthermore, we compare two methods of CRISPR-Cas9 system delivery into cells: transfection with plasmid DNA encoding the CRISPR-Cas9 system and RNP transfection with the Cas9-gRNA complex. We estimate the efficiency of genomic editing and protein lifespan post-transfection. Intriguingly, we found that RNP treatment of cells, even in the absence of a transfection system, is a relatively efficient method for RNP delivery into cell culture. This discovery is particularly promising as it can significantly reduce cytotoxicity, which is crucial for certain cell cultures such as induced pluripotent stem cells (iPSCs).
Collapse
Affiliation(s)
- Konstantin Evmenov
- Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, 119991 Moscow, Russia; (K.E.); (N.P.)
| | - Nikolay Pustogarov
- Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, 119991 Moscow, Russia; (K.E.); (N.P.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, 119991 Moscow, Russia
- Department of Biology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Dmitri Panteleev
- Institute of Higher Nervous Activity and Neurophysiology, The Russian Academy of Sciences, 117485 Moscow, Russia;
| | - Artur Safin
- Department of Biology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Elena Alkalaeva
- Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, 119991 Moscow, Russia; (K.E.); (N.P.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
6
|
Wang J, Maschietto F, Qiu T, Arantes PR, Skeens E, Palermo G, Lisi GP, Batista VS. Substrate-independent activation pathways of the CRISPR-Cas9 HNH nuclease. Biophys J 2023; 122:4635-4644. [PMID: 37936350 PMCID: PMC10754686 DOI: 10.1016/j.bpj.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/29/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023] Open
Abstract
A hallmark of tightly regulated high-fidelity enzymes is that they become activated only after encountering cognate substrates, often by an induced-fit mechanism rather than conformational selection. Upon analysis of molecular dynamics trajectories, we recently discovered that the Cas9 HNH domain exists in three conformations: 1) Y836 (which is two residues away from the catalytic D839 and H840 residues) is hydrogen bonded to the D829 backbone amide, 2) Y836 is hydrogen bonded to the backbone amide of D861 (which is one residue away from the third catalytic residue N863), and 3) Y836 is not hydrogen bonded to either residue. Each of the three conformers differs from the active state of HNH. The conversion between the inactive and active states involves a local unfolding-refolding process that displaces the Cα and side chain of the catalytic N863 residue by ∼5 Å and ∼10 Å, respectively. In this study, we report the two largest principal components of coordinate variance of the HNH domain throughout molecular dynamics trajectories to establish the interconversion pathways of these conformations. We show that conformation 2 is an obligate step between conformations 1 and 3, which are not directly interconvertible without conformation 2. The loss of hydrogen bonding of the Y836 side chain in conformation 3 likely plays an essential role in activation during local unfolding-refolding of an α-helix containing the catalytic N863. Three single Lys-to-Ala mutants appear to eliminate this substrate-independent activation pathway of the wild-type HNH nuclease, thereby enhancing the fidelity of HNH cleavage.
Collapse
Affiliation(s)
- Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut.
| | | | - Tianyin Qiu
- Department of Chemistry, Yale University, New Haven, Connecticut
| | - Pablo R Arantes
- Department of Bioengineering, University of California, Riverside, Riverside, California
| | - Erin Skeens
- Department of Chemistry, University of California, Riverside, Riverside, California
| | - Giulia Palermo
- Department of Bioengineering, University of California, Riverside, Riverside, California; Department of Chemistry, University of California, Riverside, Riverside, California.
| | - George P Lisi
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, Rhode Island.
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, Connecticut.
| |
Collapse
|
7
|
Newsom SN, Wang DS, Rostami S, Schuster I, Parameshwaran HP, Joseph YG, Qin PZ, Liu J, Rajan R. Differential Divalent Metal Binding by SpyCas9's RuvC Active Site Contributes to Nonspecific DNA Cleavage. CRISPR J 2023; 6:527-542. [PMID: 38108519 PMCID: PMC10753984 DOI: 10.1089/crispr.2023.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 11/10/2023] [Indexed: 12/19/2023] Open
Abstract
To protect against mobile genetic elements (MGEs), some bacteria and archaea have clustered regularly interspaced short palindromic repeats-CRISPR associated (CRISPR-Cas) adaptive immune systems. CRISPR RNAs (crRNAs) bound to Cas nucleases hybridize to MGEs based on sequence complementarity to guide the nucleases to cleave the MGEs. This programmable DNA cleavage has been harnessed for gene editing. Safety concerns include off-target and guide RNA (gRNA)-free DNA cleavages, both of which are observed in the Cas nuclease commonly used for gene editing, Streptococcus pyogenes Cas9 (SpyCas9). We developed a SpyCas9 variant (SpyCas9H982A) devoid of gRNA-free DNA cleavage activity that is more selective for on-target cleavage. The H982A substitution in the metal-dependent RuvC active site reduces Mn2+-dependent gRNA-free DNA cleavage by ∼167-fold. Mechanistic molecular dynamics analysis shows that Mn2+, but not Mg2+, produces a gRNA-free DNA cleavage competent state that is disrupted by the H982A substitution. Our study demonstrates the feasibility of modulating cation:protein interactions to engineer safer gene editing tools.
Collapse
Affiliation(s)
- Sydney N. Newsom
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, The University of Oklahoma, Norman, Oklahoma, USA
| | - Duen-Shian Wang
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Saadi Rostami
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, The University of Oklahoma, Norman, Oklahoma, USA
| | - Isabelle Schuster
- Department of Chemistry, University of Southern California, Los Angeles, California, USA
| | - Hari Priya Parameshwaran
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, The University of Oklahoma, Norman, Oklahoma, USA
| | - Yadin G. Joseph
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, The University of Oklahoma, Norman, Oklahoma, USA
| | - Peter Z. Qin
- Department of Chemistry, University of Southern California, Los Angeles, California, USA
| | - Jin Liu
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Rakhi Rajan
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, The University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
8
|
Ebrahimi S, Khosravi MA, Raz A, Karimipoor M, Parvizi P. CRISPR-Cas Technology as a Revolutionary Genome Editing tool: Mechanisms and Biomedical Applications. IRANIAN BIOMEDICAL JOURNAL 2023; 27:219-46. [PMID: 37873636 PMCID: PMC10707817 DOI: 10.61186/ibj.27.5.219] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/14/2023] [Indexed: 12/17/2023]
Abstract
Programmable nucleases are powerful genomic tools for precise genome editing. These tools precisely recognize, remove, or change DNA at a defined site, thereby, stimulating cellular DNA repair pathways that can cause mutations or accurate replacement or deletion/insertion of a sequence. CRISPR-Cas9 system is the most potent and useful genome editing technique adapted from the defense immune system of certain bacteria and archaea against viruses and phages. In the past decade, this technology made notable progress, and at present, it has largely been used in genome manipulation to make precise gene editing in plants, animals, and human cells. In this review, we aim to explain the basic principle, mechanisms of action, and applications of this system in different areas of medicine, with emphasizing on the detection and treatment of parasitic diseases.
Collapse
Affiliation(s)
- Sahar Ebrahimi
- Molecular Systematics Laboratory, Parasitology Department, Pasteur Institute of Iran, Tehran, Iran
- Molecular Medicine Department, Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Ali Khosravi
- Molecular Medicine Department, Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Abbasali Raz
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Morteza Karimipoor
- Molecular Medicine Department, Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Parviz Parvizi
- Molecular Systematics Laboratory, Parasitology Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
9
|
Bhattacharya S, Satpati P. Insights into the Mechanism of CRISPR/Cas9-Based Genome Editing from Molecular Dynamics Simulations. ACS OMEGA 2023; 8:1817-1837. [PMID: 36687047 PMCID: PMC9850488 DOI: 10.1021/acsomega.2c05583] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
The CRISPR/Cas9 system is a popular genome-editing tool with immense therapeutic potential. It is a simple two-component system (Cas9 protein and RNA) that recognizes the DNA sequence on the basis of RNA:DNA complementarity, and the Cas9 protein catalyzes the double-stranded break in the DNA. In the past decade, near-atomic resolution structures at various stages of the CRISPR/Cas9 DNA editing pathway have been reported along with numerous experimental and computational studies. Such studies have boosted knowledge of the genome-editing mechanism. Despite such advancements, the application of CRISPR/Cas9 in therapeutics is still limited, primarily due to off-target effects. Several studies aim at engineering high-fidelity Cas9 to minimize the off-target effects. Molecular Dynamics (MD) simulations have been an excellent complement to the experimental studies for investigating the mechanism of CRISPR/Cas9 editing in terms of structure, thermodynamics, and kinetics. MD-based studies have uncovered several important molecular aspects of Cas9, such as nucleotide binding, catalytic mechanism, and off-target effects. In this Review, the contribution of MD simulation to understand the CRISPR/Cas9 mechanism has been discussed, preceded by an overview of the history, mechanism, and structural aspects of the CRISPR/Cas9 system. These studies are important for the rational design of highly specific Cas9 and will also be extremely promising for achieving more accurate genome editing in the future.
Collapse
Affiliation(s)
- Shreya Bhattacharya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Priyadarshi Satpati
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
10
|
Wang J, Arantes PR, Ahsan M, Sinha S, Kyro GW, Maschietto F, Allen B, Skeens E, Lisi GP, Batista VS, Palermo G. Twisting and swiveling domain motions in Cas9 to recognize target DNA duplexes, make double-strand breaks, and release cleaved duplexes. Front Mol Biosci 2023; 9:1072733. [PMID: 36699705 PMCID: PMC9868570 DOI: 10.3389/fmolb.2022.1072733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
The CRISPR-associated protein 9 (Cas9) has been engineered as a precise gene editing tool to make double-strand breaks. CRISPR-associated protein 9 binds the folded guide RNA (gRNA) that serves as a binding scaffold to guide it to the target DNA duplex via a RecA-like strand-displacement mechanism but without ATP binding or hydrolysis. The target search begins with the protospacer adjacent motif or PAM-interacting domain, recognizing it at the major groove of the duplex and melting its downstream duplex where an RNA-DNA heteroduplex is formed at nanomolar affinity. The rate-limiting step is the formation of an R-loop structure where the HNH domain inserts between the target heteroduplex and the displaced non-target DNA strand. Once the R-loop structure is formed, the non-target strand is rapidly cleaved by RuvC and ejected from the active site. This event is immediately followed by cleavage of the target DNA strand by the HNH domain and product release. Within CRISPR-associated protein 9, the HNH domain is inserted into the RuvC domain near the RuvC active site via two linker loops that provide allosteric communication between the two active sites. Due to the high flexibility of these loops and active sites, biophysical techniques have been instrumental in characterizing the dynamics and mechanism of the CRISPR-associated protein 9 nucleases, aiding structural studies in the visualization of the complete active sites and relevant linker structures. Here, we review biochemical, structural, and biophysical studies on the underlying mechanism with emphasis on how CRISPR-associated protein 9 selects the target DNA duplex and rejects non-target sequences.
Collapse
Affiliation(s)
- Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Pablo R. Arantes
- Department of Bioengineering and Department of Chemistry, University of California, Riverside, Riverside, CA, United States
| | - Mohd Ahsan
- Department of Bioengineering and Department of Chemistry, University of California, Riverside, Riverside, CA, United States
| | - Souvik Sinha
- Department of Bioengineering and Department of Chemistry, University of California, Riverside, Riverside, CA, United States
| | - Gregory W. Kyro
- Department of Chemistry, Yale University, New Haven, CT, United States
| | | | - Brandon Allen
- Department of Chemistry, Yale University, New Haven, CT, United States
| | - Erin Skeens
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| | - George P. Lisi
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| | - Victor S. Batista
- Department of Chemistry, Yale University, New Haven, CT, United States
| | - Giulia Palermo
- Department of Bioengineering and Department of Chemistry, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
11
|
Full-Length Model of SaCas9-sgRNA-DNA Complex in Cleavage State. Int J Mol Sci 2023; 24:ijms24021204. [PMID: 36674715 PMCID: PMC9867433 DOI: 10.3390/ijms24021204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/10/2023] Open
Abstract
Staphylococcus aureus Cas9 (SaCas9) is a widely used genome editing tool. Understanding its molecular mechanisms of DNA cleavage could effectively guide the engineering optimization of this system. Here, we determined the first cryo-electron microscopy structure of the SaCas9-sgRNA-DNA ternary complex. This structure reveals that the HNH nuclease domain is tightly bound to the cleavage site of the target DNA strand, and is in close contact with the WED and REC domains. Moreover, it captures the complete structure of the sgRNA, including the previously unresolved stem-loop 2. Based on this structure, we build a full-length model for the ternary complex in cleavage state. This model enables identification of the residues for the interactions between the HNH domain and the WED and REC domains. Moreover, we found that the stem-loop 2 of the sgRNA tightly binds to the PI and RuvC domains and may also regulate the position shift of the RuvC domain. Further mutagenesis and molecular dynamics simulations supported the idea that the interactions of the HNH domain with the WED and REC domains play an important role in the DNA cleavage. Thus, this study provides new mechanistic insights into the DNA cleavage of SaCas9 and is also useful for guiding the future engineering of SaCas9-mediated gene editing systems.
Collapse
|
12
|
Talluri S. Engineering and Design of Programmable Genome Editors. J Phys Chem B 2022; 126:5140-5150. [PMID: 35819243 DOI: 10.1021/acs.jpcb.2c03761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Programmable genome editors are enzymes that can be targeted to a specific location in the genome for making site-specific alterations or deletions. The engineering, design, and development of sequence-specific editors has resulted in a dramatic increase in the precision of editing for nucleotide sequences. These editors can target specific locations in a genome, in vivo. The genome editors are being deployed for the development of genetically modified organisms for agriculture and industry, and for gene therapy of inherited human genetic disorders, cancer, and immunotherapy. Experimental and computational studies of structure, binding, activity, dynamics, and folding, reviewed here, have provided valuable insights that have the potential for increasing the functional efficiency of these gene/genome editors. Biochemical and biophysical studies of the specificities of natural and engineered genome editors reveal that increased binding affinity can be detrimental because of the increase of off-target effects and that the engineering and design of genome editors with higher specificity may require modulation and control of the conformational dynamics.
Collapse
Affiliation(s)
- Sekhar Talluri
- Department of Biotechnology, GITAM, Visakhapatnam, India 530045
| |
Collapse
|
13
|
Wang J, Skeens E, Arantes PR, Maschietto F, Allen B, Kyro GW, Lisi GP, Palermo G, Batista VS. Structural Basis for Reduced Dynamics of Three Engineered HNH Endonuclease Lys-to-Ala Mutants for the Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-Associated 9 (CRISPR/Cas9) Enzyme. Biochemistry 2022; 61:785-794. [PMID: 35420793 PMCID: PMC9069930 DOI: 10.1021/acs.biochem.2c00127] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Many bacteria possess type-II immunity against invading phages or plasmids known as the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated 9 (Cas9) system to detect and degrade the foreign DNA sequences. The Cas9 protein has two endonucleases responsible for double-strand breaks (the HNH domain for cleaving the target strand of DNA duplexes and RuvC domain for the nontarget strand, respectively) and a single-guide RNA-binding domain where the RNA and target DNA strands are base-paired. Three engineered single Lys-to-Ala HNH mutants (K810A, K848A, and K855A) exhibit an enhanced substrate specificity for cleavage of the target DNA strand. We report in this study that in the wild-type (wt) enzyme, D835, Y836, and D837 within the Y836-containing loop (comprising E827-D837) adjacent to the catalytic site have uncharacterizable broadened 1H15N nuclear magnetic resonance (NMR) features, whereas remaining residues in the loop have different extents of broadened NMR spectra. We find that this loop in the wt enzyme exhibits three distinct conformations over the duration of the molecular dynamics simulations, whereas the three Lys-to-Ala mutants retain only one conformation. The versatility of multiple alternate conformations of this loop in the wt enzyme could help to recruit noncognate DNA substrates into the HNH active site for cleavage, thereby reducing its substrate specificity relative to the three mutants. Our study provides further experimental and computational evidence that Lys-to-Ala substitutions reduce dynamics of proteins and thus increase their stability.
Collapse
Affiliation(s)
- Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, United States
| | - Erin Skeens
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Pablo R Arantes
- Department of Bioengineering and Department of Chemistry, University of California Riverside, Riverside, California 92521-9800, United States
| | - Federica Maschietto
- Department of Chemistry, Yale University, New Haven, Connecticut 06511-8499, United States
| | - Brandon Allen
- Department of Chemistry, Yale University, New Haven, Connecticut 06511-8499, United States
| | - Gregory W Kyro
- Department of Chemistry, Yale University, New Haven, Connecticut 06511-8499, United States
| | - George P Lisi
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Giulia Palermo
- Department of Bioengineering and Department of Chemistry, University of California Riverside, Riverside, California 92521-9800, United States
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, Connecticut 06511-8499, United States
| |
Collapse
|