1
|
Gareev I, Shumadalova A, Ilyasova T, Beilerli A, Shi H. Circular RNAs in intracranial aneurysms: Emerging roles in pathogenesis, diagnosis and therapeutic intervention. Noncoding RNA Res 2024; 9:211-220. [PMID: 38125753 PMCID: PMC10730429 DOI: 10.1016/j.ncrna.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Intracranial aneurysms (IAs) present a substantial health threat, given the potential for catastrophic ruptures and subarachnoid hemorrhages (SAH). Swift and effective measures for diagnosis and treatment are paramount to enhance patient outcomes and alleviate the associated healthcare burden. In this context, circular RNAs (circRNAs) have emerged as an intriguing area of investigation, offering promise as both diagnostic biomarkers and therapeutic targets for IAs. CircRNAs have demonstrated their influence on critical molecular and cellular processes underpinning IAs pathogenesis, revealing their pivotal role in understanding this complex ailment. Beyond their diagnostic potential, circRNAs hold great potential as prognostic markers, providing crucial insights into IAs rupture risk. The unique circular structure and their regulatory functions make circRNAs an enticing avenue for innovative therapeutic approaches. The ongoing study of circRNAs in the context of IAs is an exciting and rapidly evolving field that has the potential to revolutionize approaches to diagnosis, treatment, and prevention of this life-threatening condition. As research continues to unravel the intricate roles of circRNAs, they are poised to become invaluable tools in clinical practice, enhancing patient care and ultimately reducing the impact of cerebral aneurysms on both individuals and healthcare systems. This comprehensive review delves deeply into the world of circRNAs in the realm of IAs, elucidating their multifaceted roles in the onset and progression of this condition. Moreover, this review ventures into the diagnosis and therapeutic potential of circRNAs, exploring their possible applications in gene therapy and as targets for novel treatment modalities.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Central Research Laboratory, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin street, 450008, Russia
| | - Alina Shumadalova
- Department of General Chemistry, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin street, 450008, Russia
| | - Tatiana Ilyasova
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin street, 450008, Russia
| | - Aferin Beilerli
- Department of Obstetrics and Gynecology, Tyumen State Medical University, Tyumen, Russia
| | - Huaizhang Shi
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| |
Collapse
|
2
|
Gareev I, Beylerli O, Ahmad A, Ilyasova T, Shi H, Chekhonin V. Comparative Analysis of Circular RNAs Expression and Function between Aortic and Intracranial Aneurysms. Curr Drug Targets 2024; 25:866-884. [PMID: 39219419 PMCID: PMC11774312 DOI: 10.2174/0113894501319306240819052840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024]
Abstract
An aneurysm is an abnormal enlargement or bulging of the wall of a blood vessel. Most often, aneurysms occur in large blood vessels - the aorta (Thoracic Aortic Aneurysm (TAA) and Abdominal Aortic Aneurysm (AAA)) and brain vessels (Intracranial Aneurysm (IA)). Despite the presence of significant differences in the pathogenesis of the development and progression of IA and TAA/AAA, there are also similarities. For instance, both have been shown to be strongly influenced by shear stress, inflammatory processes, and enzymatic destruction of the elastic lamellae and extracellular matrix (ECM) proteins of the vascular wall. Moreover, although IA and TAA are predominantly considered arteriopathies with different pathological mechanisms, they share risk factors with AAA, such as hypertension and smoking. However, there is a need for a more in- -depth study of the key elements that may influence the formation and progression of a particular aneurysm to find ways of therapeutic intervention or search for a diagnostic tool. Today, it is known that the disruption of gene expression is one of the main mechanisms that contribute to the development of aneurysms. At the same time, growing evidence suggests that aberrant epigenetic regulation of gene function is strongly related to the genesis of aneurysms. Although much has been studied of the known protein-coding genes, circular RNAs (circRNAs), a relatively new and rapidly evolving large family of transcripts, have recently received much scientific attention. CircRNAs regulate gene expression through the sponging of microRNAs (miRNAs) and can also be used as therapeutic targets and biomarkers. Increasing evidence has implicated circRNAs in the pathogenesis of multiple cardiovascular diseases, including the development of aneurysms. However, the mechanism of dysregulation of certain circRNAs in a particular aneurysm remains to be studied. The discovery of circRNAs has recently advanced our understanding of the latest mode of miRNAs/target genes regulation in the development and progression of IA and TAA/AAA. The aim of this study is to compare the expression profiles of circRNAs to search for similar or different effects of certain circRNAs on the formation and progression of IA and TAA/AAA.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Central Research Laboratory, Bashkir State Medical University, Ufa, 450008, Russia
| | - Ozal Beylerli
- Educational and Scientific Institute of Neurosurgery, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Tatiana Ilyasova
- Central Research Laboratory, Bashkir State Medical University, Ufa, 450008, Russia
| | - Huaizhang Shi
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 1500, China
| | - Vladimir Chekhonin
- Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
- Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
- The National Medical Research Center for Endocrinology, Moscow, Russian Federation
| |
Collapse
|
3
|
Liu Q, Wang Y, Zhang T, Fang J, Meng S. Circular RNAs in vascular diseases. Front Cardiovasc Med 2023; 10:1247434. [PMID: 37840954 PMCID: PMC10570532 DOI: 10.3389/fcvm.2023.1247434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Vascular diseases are the leading cause of morbidity and mortality worldwide and are urgently in need of diagnostic biomarkers and therapeutic strategies. Circular RNAs (circRNAs) represent a unique class of RNAs characterized by a circular loop configuration and have recently been identified to possess a wide variety of biological functions. CircRNAs exhibit exceptional stability, tissue specificity, and are detectable in body fluids, thus holding promise as potential biomarkers. Their encoding function and stable gene expression also position circRNAs as an excellent alternative to gene therapy. Here, we briefly review the biogenesis, degradation, and functions of circRNAs. We summarize circRNAs discovered in major vascular diseases such as atherosclerosis and aneurysms, with a particular focus on molecular mechanisms of circRNAs identified in vascular endothelial cells and smooth muscle cells, in the hope to reveal new directions for mechanism, prognosis and therapeutic targets of vascular diseases.
Collapse
Affiliation(s)
| | | | | | | | - Shu Meng
- Department of Basic Science Research, Guangzhou Laboratory, Guangzhou, China
| |
Collapse
|
4
|
Bai C, Hao X, Zhou L, Sun Y, Song L, Wang F, Yang L, Liu J, Chen J. Machine learning-based identification of the novel circRNAs circERBB2 and circCHST12 as potential biomarkers of intracerebral hemorrhage. Front Neurosci 2022; 16:1002590. [PMID: 36523430 PMCID: PMC9745062 DOI: 10.3389/fnins.2022.1002590] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/14/2022] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND The roles and potential diagnostic value of circRNAs in intracerebral hemorrhage (ICH) remain elusive. METHODS This study aims to investigate the expression profiles of circRNAs by RNA sequencing and RT-PCR in a discovery cohort and an independent validation cohort. Bioinformatics analysis was performed to identify the potential functions of circRNA host genes. Machine learning classification models were used to assess circRNAs as potential biomarkers of ICH. RESULTS A total of 125 and 284 differentially expressed circRNAs (fold change > 1.5 and FDR < 0.05) were found between ICH patients and healthy controls in the discovery and validation cohorts, respectively. Nine circRNAs were consistently altered in ICH patients compared to healthy controls. The combination of the novel circERBB2 and circCHST12 in ICH patients and healthy controls showed an area under the curve of 0.917 (95% CI: 0.869-0.965), with a sensitivity of 87.5% and a specificity of 82%. In combination with ICH risk factors, circRNAs improved the performance in discriminating ICH patients from healthy controls. Together with hsa_circ_0005505, two novel circRNAs for differentiating between patients with ICH and healthy controls showed an AUC of 0.946 (95% CI: 0.910-0.982), with a sensitivity of 89.1% and a specificity of 86%. CONCLUSION We provided a transcriptome-wide overview of aberrantly expressed circRNAs in ICH patients and identified hsa_circ_0005505 and novel circERBB2 and circCHST12 as potential biomarkers for diagnosing ICH.
Collapse
Affiliation(s)
- Congxia Bai
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xiaoyan Hao
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Lei Zhou
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yingying Sun
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fengjuan Wang
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Liu Yang
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jiayun Liu
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jingzhou Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central-China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China
| |
Collapse
|
5
|
Wu XB, Wu YT, Guo XX, Xiang C, Chen PS, Qin W, Shi ZS. Circular RNA hsa_circ_0007990 as a blood biomarker for unruptured intracranial aneurysm with aneurysm wall enhancement. Front Immunol 2022; 13:1061592. [PMID: 36466848 PMCID: PMC9714537 DOI: 10.3389/fimmu.2022.1061592] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/04/2022] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) may involve the formation and rupture of intracranial aneurysms (IA). Inflammation plays a vital role in the development and progression of IA, which can be reflected by aneurysm wall enhancement (AWE) on high-resolution vessel wall magnetic resonance imaging (HR-VWI). This study aims to evaluate the role of circRNAs as the blood inflammatory biomarker for unruptured IA (UIA) patients with AWE on HR-VWI. METHODS We analyzed the circRNA expression profiles in the peripheral blood samples among subjects from saccular UIA with AWE, UIA without AWE, and healthy controls by the circRNA microarray. The differential expression of hsa_circ_0007990 was assessed. We constructed the hsa_circ_0007990-microRNA-mRNA network and the regulatory axis of hub genes associated with the AWE in UIA. RESULTS Eighteen patients harboring saccular UIAs with HR VWI and five healthy controls were included. We found 412 differentially expressed circRNAs between UIA patients and healthy controls by circRNA microarray. Two hundred thirty-one circRNAs were significantly differentially expressed in UIA patients with AWE compared with those without AWE. Twelve upregulated circRNAs were associated with AWE of UIA, including hsa_circ_0007990, hsa_circ_0114507, hsa_circ_0020460, hsa_circ_0053944, hsa_circ_0000758, hsa_circ_0000034, hsa_circ_0009127, hsa_circ_0052793, hsa_circ_0000301 and hsa_circ_0000729. The expression of hsa_circ_0007990 was increased gradually in the healthy control, UIA without AWE, and UIA with AWE confirmed by RT-PCR (P<0.001). We predicted 4 RNA binding proteins (Ago2, DGCR8, EIF4A3, PTB) and period circadian regulator 1 as an encoding protein with hsa_circ_0007990. The hsa_circ_0007990-microRNA-mRNA network containing five microRNAs (miR-4717-5p, miR-1275, miR-150-3p, miR-18a-5p, miR-18b-5p), and 97 mRNAs was constructed. The five hub genes (hypoxia-inducible factor 1 subunit alpha, estrogen receptor 1, forkhead box O1, insulin-like growth factor 1, CREB binding protein) were involved in the inflammatory response. CONCLUSION Differentially expressed blood circRNAs associated with AWE on HR-VWI may be the novel inflammatory biomarkers for assessing UIA patients. The mechanism of hsa_circRNA_0007990 for UIA progression needs to investigate further.
Collapse
Affiliation(s)
- Xiao-Bing Wu
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - You-Tao Wu
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xin-Xing Guo
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chun Xiang
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Pei-Sheng Chen
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wang Qin
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhong-Song Shi
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Chitwood CA, Shih ED, Amili O, Larson AS, Ogle BM, Alford PW, Grande AW. Biology and Hemodynamics of Aneurysm Rupture. Neurosurg Clin N Am 2022; 33:431-441. [DOI: 10.1016/j.nec.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Wang K, Tan G, Tian R, Zhou H, Xiang C, Pan K. Circular RNA circ_0021001 regulates miR-148b-3p/GREM1 axis to modulate proliferation and apoptosis of vascular smooth muscle cells. Metab Brain Dis 2022; 37:2027-2038. [PMID: 35689751 DOI: 10.1007/s11011-022-01014-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
Abstract
Intracranial aneurysm (IA) is an abnormal expression in the intracranial arteries, which is related to the growth and apoptosis of vascular smooth muscle cells (VSMCs). Circular RNA (circRNA) circ_0021001 (also named circARFIP2) has been identified to mediate the regulation of VSMCs proliferation. However, the molecular mechanism of circ_0021001 involved in VSMC dysfunction in IA is poorly defined. The expression levels of circ_0021001, microRNA-148b-3p (miR-148b-3p), and Gremlin 1 (GREM1) were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Cell viability, proliferation, cell cycle progression, and apoptosis were detected by Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), and flow cytometry assays. Protein levels of proliferating cell nuclear antigen (PCNA), p21, B-cell lymphoma-2 (Bcl-2), Bcl-2 related X protein (Bax), and GREM1 were examined by western blot assay. The binding relationship between miR-148b-3p and circ_0021001 or GREM1 was predicted by StarBase and then verified using a dual-luciferase reporter assay. The expression levels of circ_0021001 and GREM1 were increased, and that of miR-148b-3p was decreased in IA tissues and HUASMCs. Moreover, the downregulation of circ_0021001 could repress proliferation ability and induce apoptosis of HUASMCs. The mechanical analysis uncovered that circ_0021001 served as a sponge of miR-148b-3p to regulate GREM1 expression. Circ_0021001 silencing could suppress cell growth and induce apoptosis of HUASMCs partially through modulating the miR-148b-3p/GREM1, presented circ_0021001 as a promising therapeutic target for IA.
Collapse
Affiliation(s)
- Kui Wang
- Department of Neurosurgery, Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, 158 Wuyang Avenue, Enshi, Hubei, 445000, China
| | - Gaofeng Tan
- Department of Neurosurgery, Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, 158 Wuyang Avenue, Enshi, Hubei, 445000, China
| | - Renfu Tian
- Department of Neurosurgery, Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, 158 Wuyang Avenue, Enshi, Hubei, 445000, China
| | - Han Zhou
- Department of Neurosurgery, Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, 158 Wuyang Avenue, Enshi, Hubei, 445000, China
| | - Chunhui Xiang
- Department of Neurosurgery, Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, 158 Wuyang Avenue, Enshi, Hubei, 445000, China
| | - Ke Pan
- Department of Neurosurgery, Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, 158 Wuyang Avenue, Enshi, Hubei, 445000, China.
| |
Collapse
|
8
|
Wang C, Luo Y, Tang H, Yan Y, Chang X, Zhao R, Li Q, Yang P, Hong B, Xu Y, Huang Q, Liu J. Hsa_circ_0031608: A Potential Modulator of VSMC Phenotype in the Rupture of Intracranial Aneurysms. Front Mol Neurosci 2022; 15:842865. [PMID: 35359572 PMCID: PMC8963354 DOI: 10.3389/fnmol.2022.842865] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose Phenotypic modulation of vascular smooth muscle cells (VSMCs) plays an important role in the development of intracranial aneurysms (IAs). Growing evidence has demonstrated that circular RNAs (circRNAs) may serve as a potential modulator of VSMC phenotype in various vascular diseases. This study aimed to assess the potential function of circRNAs in the rupture of IAs and VSMC phenotypic modulation. Methods Using surgically dissected human ruptured (n = 8) and unruptured (n = 8) IA lesions, differentially expressed circRNAs were screened by transcriptomic sequencing and verified using qRT-PCR. Based on the screened circRNA, we predicted and screened the combined miRNA and downstream mRNAs to construct circRNA-miRNA-mRNA networks. Further in vitro experiments were performed to investigate the relationship between the validated circRNA and the phenotypic switching of VSMCs. Results We found 1,373 differentially expressed genes in ruptured versus unruptured aneurysms. The top five dysregulated circRNAs were selected for qRT-PCR validation. We found hsa_circ_0031608 was both highly expressed in ruptured IAs and pro-inflammatory transformation of VSMCs. Then, a regulatory circRNA-miRNA-mRNA with one circRNA node, six miRNA nodes, and 84 mRNA nodes was constructed. GO analysis and KEGG pathway enrichment analysis were performed on mRNAs in the network. Then, a PPI network was built based on these mRNAs and five hub genes were identified (FOXO3, DICER1, CCND2, IGF1R, and TNRC6B) by the cytoHubba plugin in Cytoscape software. In vitro, overexpression of hsa_circ_0031608 influenced the expression of VSMC phenotypic markers validated by qPCR and Western blotting. Furthermore, hsa_circ_0031608 promoted the migration and proliferation capacity of VSMCs. Conclusion hsa_circ_0031608 regulated the phenotypic modulation of VSMCs and played an important role in the rupture of IAs. The specific mechanism should be further studied and confirmed.
Collapse
Affiliation(s)
- Chuanchuan Wang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yin Luo
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Biomedical Engineering, School of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Haishuang Tang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Neurosurgery, Naval Medical Center of PLA, Shanghai, China
| | - Yazhou Yan
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Neurosurgery, 971 Hospital of PLA, Qingdao, China
| | - Xiaozan Chang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Rui Zhao
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qiang Li
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Pengfei Yang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Bo Hong
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yi Xu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qinghai Huang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jianmin Liu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
9
|
Circular RNAs: regulators of vascular smooth muscle cells in cardiovascular diseases. J Mol Med (Berl) 2022; 100:519-535. [DOI: 10.1007/s00109-022-02186-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/20/2022] [Accepted: 02/28/2022] [Indexed: 12/13/2022]
|