1
|
Peng Y, Bui CH, Zhang XJ, Chen JS, Tham CC, Chu WK, Chen LJ, Pang CP, Yam JC. The role of EZH2 in ocular diseases: a narrative review. Epigenomics 2023; 15:557-570. [PMID: 37458071 DOI: 10.2217/epi-2023-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
EZH2, acting as a catalytic subunit of PRC2 to catalyze lysine 27 in histone H3, induces the suppression of gene expression. EZH2 can regulate cell proliferation and differentiation of retinal progenitors, which are required for physiological retinal development. Meanwhile, an abnormal level of EZH2 has been observed in ocular tumors and other pathological tissues. This review summarizes the current knowledge on EZH2 in retinal development and ocular diseases, including inherited retinal diseases, ocular tumors, corneal injury, cataract, glaucoma, diabetic retinopathy and age-related retinal degeneration. We highlight the potential of targeting EZH2 as a precision therapeutic target in ocular diseases.
Collapse
Affiliation(s)
- Yu Peng
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, 999077, Hong Kong
| | - Christine Ht Bui
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, 999077, Hong Kong
| | - Xiu J Zhang
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, 999077, Hong Kong
| | - Jian S Chen
- Aier School of Ophthalmology, Central South University, Changsha, Hunan Province, 410000, China
- Aier Eye Institute, Changsha, Hunan Province, 410000, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, Guangdong Province, 510000, China
| | - Clement C Tham
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, 999077, Hong Kong
- Hong Kong Eye Hospital, Kowloon, 999077, Hong Kong
- Department of Ophthalmology & Visual Sciences, Prince of Wales Hospital, 999077, Hong Kong
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, 999077, Hong Kong
| | - Wai K Chu
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, 999077, Hong Kong
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, 999077, Hong Kong
| | - Li J Chen
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, 999077, Hong Kong
- Department of Ophthalmology & Visual Sciences, Prince of Wales Hospital, 999077, Hong Kong
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, 999077, Hong Kong
| | - Chi P Pang
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, 999077, Hong Kong
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, 999077, Hong Kong
| | - Jason C Yam
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, 999077, Hong Kong
- Hong Kong Eye Hospital, Kowloon, 999077, Hong Kong
- Department of Ophthalmology, Hong Kong Children's Hospital, 999077, Hong Kong
- Department of Ophthalmology & Visual Sciences, Prince of Wales Hospital, 999077, Hong Kong
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, 999077, Hong Kong
| |
Collapse
|
2
|
Barbagallo C, Stella M, Broggi G, Russo A, Caltabiano R, Ragusa M. Genetics and RNA Regulation of Uveal Melanoma. Cancers (Basel) 2023; 15:775. [PMID: 36765733 PMCID: PMC9913768 DOI: 10.3390/cancers15030775] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Uveal melanoma (UM) is the most common intraocular malignant tumor and the most frequent melanoma not affecting the skin. While the rate of UM occurrence is relatively low, about 50% of patients develop metastasis, primarily to the liver, with lethal outcome despite medical treatment. Notwithstanding that UM etiopathogenesis is still under investigation, a set of known mutations and chromosomal aberrations are associated with its pathogenesis and have a relevant prognostic value. The most frequently mutated genes are BAP1, EIF1AX, GNA11, GNAQ, and SF3B1, with mutually exclusive mutations occurring in GNAQ and GNA11, and almost mutually exclusive ones in BAP1 and SF3B1, and BAP1 and EIF1AX. Among chromosomal aberrations, monosomy of chromosome 3 is the most frequent, followed by gain of chromosome 8q, and full or partial loss of chromosomes 1 and 6. In addition, epigenetic mechanisms regulated by non-coding RNAs (ncRNA), namely microRNAs and long non-coding RNAs, have also been investigated. Several papers investigating the role of ncRNAs in UM have reported that their dysregulated expression affects cancer-related processes in both in vitro and in vivo models. This review will summarize current findings about genetic mutations, chromosomal aberrations, and ncRNA dysregulation establishing UM biology.
Collapse
Affiliation(s)
- Cristina Barbagallo
- Department of Biomedical and Biotechnological Sciences—Section of Biology and Genetics, University of Catania, 95123 Catania, Italy
| | - Michele Stella
- Department of Biomedical and Biotechnological Sciences—Section of Biology and Genetics, University of Catania, 95123 Catania, Italy
| | - Giuseppe Broggi
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia—Section of Anatomic Pathology, University of Catania, 95123 Catania, Italy
| | - Andrea Russo
- Department of Ophthalmology, University of Catania, 95123 Catania, Italy
| | - Rosario Caltabiano
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia—Section of Anatomic Pathology, University of Catania, 95123 Catania, Italy
| | - Marco Ragusa
- Department of Biomedical and Biotechnological Sciences—Section of Biology and Genetics, University of Catania, 95123 Catania, Italy
| |
Collapse
|
3
|
Saklani N, Chauhan V, Akhtar J, Upadhyay SK, Sirdeshmukh R, Gautam P. In silico analysis to identify novel ceRNA regulatory axes associated with gallbladder cancer. Front Genet 2023; 14:1107614. [PMID: 36873948 PMCID: PMC9978489 DOI: 10.3389/fgene.2023.1107614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
Competitive endogenous RNA (ceRNA) networks are reported to play a crucial role in regulating cancer-associated genes. Identification of novel ceRNA networks in gallbladder cancer (GBC) may improve the understanding of its pathogenesis and might yield useful leads on potential therapeutic targets for GBC. For this, a literature survey was done to identify differentially expressed lncRNAs (DELs), miRNAs (DEMs), mRNAs (DEGs) and proteins (DEPs) in GBC. Ingenuity pathway analysis (IPA) using DEMs, DEGs and DEPs in GBC identified 242 experimentally observed miRNA-mRNA interactions with 183 miRNA targets, of these 9 (CDX2, MTDH, TAGLN, TOP2A, TSPAN8, EZH2, TAGLN2, LMNB1, and PTMA) were reported at both mRNA and protein levels. Pathway analysis of 183 targets revealed p53 signaling among the top pathway. Protein-protein interaction (PPI) analysis of 183 targets using the STRING database and cytoHubba plug-in of Cytoscape software revealed 5 hub molecules, of which 3 of them (TP53, CCND1 and CTNNB1) were associated with the p53 signaling pathway. Further, using Diana tools and Cytoscape software, novel lncRNA-miRNA-mRNA networks regulating the expression of TP53, CCND1, CTNNB1, CDX2, MTDH, TOP2A, TSPAN8, EZH2, TAGLN2, LMNB1, and PTMA were constructed. These regulatory networks may be experimentally validated in GBC and explored for therapeutic applications.
Collapse
Affiliation(s)
- Neeraj Saklani
- Laboratory of Molecular Oncology, ICMR- National Institute of Pathology, New Delhi, India
| | - Varnit Chauhan
- Department of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, India
| | - Javed Akhtar
- Laboratory of Molecular Oncology, ICMR- National Institute of Pathology, New Delhi, India
| | - Santosh Kumar Upadhyay
- Department of Biotechnology, Sir J. C. Bose Technical Campus, Bhimtal, Kumaun University, Nainital, Uttarakhand, India
| | - Ravi Sirdeshmukh
- Manipal Academy of Higher Education (MAHE), Manipal, India.,Institute of Bioinformatics, International Tech Park, Bangalore, India
| | - Poonam Gautam
- Laboratory of Molecular Oncology, ICMR- National Institute of Pathology, New Delhi, India
| |
Collapse
|
4
|
Ren Y, Yan C, Wu L, Zhao J, Chen M, Zhou M, Wang X, Liu T, Yi Q, Sun J. iUMRG: multi-layered network-guided propagation modeling for the inference of susceptibility genes and potential drugs against uveal melanoma. NPJ Syst Biol Appl 2022; 8:18. [PMID: 35610253 PMCID: PMC9130324 DOI: 10.1038/s41540-022-00227-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022] Open
Abstract
Uveal melanoma (UM) is the most common primary malignant intraocular tumor. The use of precision medicine for UM to enable personalized diagnosis, prognosis, and treatment require the development of computer-aided strategies and predictive tools that can identify novel high-confidence susceptibility genes (HSGs) and potential therapeutic drugs. In the present study, a computational framework via propagation modeling on integrated multi-layered molecular networks (abbreviated as iUMRG) was proposed for the systematic inference of HSGs in UM. Under the leave-one-out cross-validation experiments, the iUMRG achieved superior predictive performance and yielded a higher area under the receiver operating characteristic curve value (0.8825) for experimentally verified SGs. In addition, using the experimentally verified SGs as seeds, genome-wide screening was performed to detect candidate HSGs using the iUMRG. Multi-perspective validation analysis indicated that most of the top 50 candidate HSGs were indeed markedly associated with UM carcinogenesis, progression, and outcome. Finally, drug repositioning experiments performed on the HSGs revealed 17 potential targets and 10 potential drugs, of which six have been approved for UM treatment. In conclusion, the proposed iUMRG is an effective supplementary tool in UM precision medicine, which may assist the development of new medical therapies and discover new SGs.
Collapse
Affiliation(s)
- Yueping Ren
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, P. R. China
| | - Congcong Yan
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, P. R. China
| | - Lili Wu
- Tibet Medical College, Beijing University of Chinese Medicine, Tibet, 850010, P. R. China
| | - Jingting Zhao
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, P. R. China
| | - Mingwei Chen
- Department of Human Anatomy, Harbin Medical University, Harbin, 150081, P. R. China
| | - Meng Zhou
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, P. R. China
| | - Xiaoyan Wang
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, 315042, P. R. China
| | - Tonghua Liu
- Tibet Medical College, Beijing University of Chinese Medicine, Tibet, 850010, P. R. China.
| | - Quanyong Yi
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, 315042, P. R. China.
| | - Jie Sun
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, P. R. China.
| |
Collapse
|