1
|
Nwabufo CK, Luc J, McGeer A, Hirota JA, Mubareka S, Doxey AC, Moraes TJ. COVID-19 severity gradient differentially dysregulates clinically relevant drug processing genes in nasopharyngeal swab samples. Br J Clin Pharmacol 2024; 90:2137-2158. [PMID: 38817198 DOI: 10.1111/bcp.16124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024] Open
Abstract
AIM Understanding how COVID-19 impacts the expression of clinically relevant drug metabolizing enzymes and membrane transporters (DMETs) is vital for addressing potential safety and efficacy concerns related to systemic and peripheral drug concentrations. This study investigates the impact of COVID-19 severity on DMETs expression and the underlying mechanisms to inform the design of precise clinical dosing regimens for affected patients. METHODS Transcriptomics analysis of 102 DMETs, 10 inflammatory markers, and 12 xenosensing regulatory genes was conducted on nasopharyngeal swabs from 50 SARS-CoV-2 positive (17 outpatients, 16 non-ICU, and 17 ICU) and 13 SARS-CoV-2 negative individuals, clinically tested through qPCR, in the Greater Toronto area from October 2020 to October 2021. RESULTS We observed a significant differential gene expression for 42 DMETs, 6 inflammatory markers, and 9 xenosensing regulatory genes. COVID-19 severity was associated with the upregulation of AKR1C1, MGST1, and SULT1E1, and downregulation of ABCC10, CYP3A43, and SLC29A4 expressions. Altogether, SARS-CoV-2-positive patients showed an upregulation in CYP2C9, CYP2C19, AKR1C1, SULT1B1, SULT2B1, and SLCO4A1 and downregulation in FMO5, MGST3, ABCC5, and SLCO4C1 compared with SARS-CoV-2 negative individuals. These dysregulations were associated with significant changes in the expression of inflammatory and xenosensing regulatory genes driven by the disease. GSTM3, PPARA, and AKR1C1 are potential biomarkers of the observed DMETs dysregulation pattern in nasopharyngeal swabs of outpatients, non-ICU, and ICU patients, respectively. CONCLUSION The severity of COVID-19 is associated with the dysregulation of DMETs involved in processing commonly prescribed drugs, suggesting potential disease-drug interactions, especially for narrow therapeutic index drugs.
Collapse
Affiliation(s)
- Chukwunonso K Nwabufo
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
- Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
- OneDrug Inc., Toronto, ON, Canada
| | - Jessica Luc
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, ON, Canada
| | - Allison McGeer
- Division of Infectious Diseases, University of Toronto, Toronto, Ontario, Canada
- Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Jeremy Alexander Hirota
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Firestone Institute for Respiratory Health-Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
- Research Institute of St. Joe's Hamilton, Hamilton, ON, Canada
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Samira Mubareka
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Andrew C Doxey
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, ON, Canada
| | - Theo J Moraes
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
- Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatrics, Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Štampar P, Blagus T, Goričar K, Bogovič P, Turel G, Strle F, Dolžan V. Genetic variability in the glucocorticoid pathway and treatment outcomes in hospitalized patients with COVID-19: a pilot study. Front Pharmacol 2024; 15:1418567. [PMID: 39135792 PMCID: PMC11317398 DOI: 10.3389/fphar.2024.1418567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction: Corticosteroids are widely used for the treatment of coronavirus disease (COVID)-19. Genetic polymorphisms of the glucocorticoid receptor, metabolizing enzymes, or transporters may affect treatment response to dexamethasone. This study aimed to evaluate the association of the glucocorticoid pathway polymorphisms with the treatment response and short-term outcomes in patients with severe COVID-19. Methods: Our pilot study included 107 hospitalized patients with COVID-19 treated with dexamethasone and/or methylprednisolone, genotyped for 14 polymorphisms in the glucocorticoid pathway. Results: In total, 83% of patients had severe disease, 15.1% had critical disease and only 1.9% had moderate disease. CYP3A4 rs35599367 was the major genetic determinant of COVID-19 severity as carriers of this polymorphism had higher risk of critical disease (OR = 6.538; 95% confidence interval = 1.19-35.914: p = 0.031) and needed intensive care unit treatment more frequently (OR = 10; 95% CI = 1.754-57.021: p = 0.01). This polymorphism was also associated with worse disease outcomes, as those patients had to switch from dexamethasone to methylprednisolone more often (OR = 6.609; 95% CI = 1.137-38.424: p = 0.036), had longer hospitalization (p = 0.022) and needed longer oxygen supplementation (p = 0.040). Carriers of NR3C1 rs6198 polymorphic allele required shorter dexamethasone treatment (p = 0.043), but had higher odds for switching therapy with methylprednisolone (OR = 2.711; 95% CI = 1.018-7.22: p = 0.046). Furthermore, rs6198 was also associated with longer duration of hospitalization (p = 0.001) and longer oxygen supplementation (p = 0.001). NR3C1 rs33388 polymorphic allele was associated with shorter hospitalization (p = 0.025) and lower odds for ICU treatment (OR = 0.144; 95% CI = 0.027-0.769: p = 0.023). GSTP1 rs1695 was associated with duration of hospitalization (p = 0.015), oxygen supplementation and (p = 0.047) dexamethasone treatment (p = 0.022). Conclusion: Our pathway-based approach enabled us to identify novel candidate polymorphisms that can be used as predictive biomarkers associated with response to glucocorticoid treatment in COVID-19. This could contribute to the patient's stratification and personalized treatment approach.
Collapse
Affiliation(s)
- Patricija Štampar
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tanja Blagus
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Katja Goričar
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Bogovič
- Department of Infectious Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Gabriele Turel
- Department of Infectious Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Franc Strle
- Department of Infectious Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
3
|
Markovic M, Ranin J, Bukumiric Z, Jerotic D, Savic-Radojevic A, Pljesa-Ercegovac M, Djukic T, Ercegovac M, Asanin M, Milosevic I, Stevanovic G, Simic T, Coric V, Matic M. GPX3 Variant Genotype Affects the Risk of Developing Severe Forms of COVID-19. Int J Mol Sci 2023; 24:16151. [PMID: 38003341 PMCID: PMC10671662 DOI: 10.3390/ijms242216151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023] Open
Abstract
In SARS-CoV-2 infection, excessive activation of the immune system intensively increases reactive oxygen species levels, causing harmful hyperinflammatory and oxidative state cumulative effects which may contribute to COVID-19 severity. Therefore, we assumed that antioxidant genetic profile, independently and complemented with laboratory markers, modulates COVID-19 severity. The study included 265 COVID-19 patients. Polymorphism of GSTM1, GSTT1, Nrf2 rs6721961, GSTM3 rs1332018, GPX3 rs8177412, GSTP1 rs1695, GSTO1 rs4925, GSTO2 rs156697, SOD2 rs4880 and GPX1 rs1050450 genes was determined with appropriate PCR-based methods. Inflammation (interleukin-6, CRP, fibrinogen, ferritin) and organ damage (urea, creatinine, transaminases and LDH) markers, complete blood count and coagulation status (d-dimer, fibrinogen) were measured. We found significant association for COVID-19 progression for patients with lymphocytes below 1.0 × 109/L (OR = 2.97, p = 0.002). Increased IL-6 and CRP were also associated with disease progression (OR = 8.52, p = 0.001, and OR = 10.97, p < 0.001, respectively), as well as elevated plasma AST and LDH (OR = 2.25, p = 0.021, and OR = 4.76, p < 0.001, respectively). Of all the examined polymorphisms, we found significant association with the risk of developing severe forms of COVID-19 for GPX3 rs8177412 variant genotype (OR = 2.42, p = 0.032). This finding could be of particular importance in the future, complementing other diagnostic tools for prediction of COVID-19 disease course.
Collapse
Affiliation(s)
- Marko Markovic
- Clinic of Infectious and Tropical Diseases, University Clinical Centre of Serbia, 11000 Belgrade, Serbia; (M.M.); (J.R.); (I.M.); (G.S.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.B.); (D.J.); (A.S.-R.); (M.P.-E.); (T.D.); (M.E.); (M.A.); (T.S.)
| | - Jovan Ranin
- Clinic of Infectious and Tropical Diseases, University Clinical Centre of Serbia, 11000 Belgrade, Serbia; (M.M.); (J.R.); (I.M.); (G.S.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.B.); (D.J.); (A.S.-R.); (M.P.-E.); (T.D.); (M.E.); (M.A.); (T.S.)
| | - Zoran Bukumiric
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.B.); (D.J.); (A.S.-R.); (M.P.-E.); (T.D.); (M.E.); (M.A.); (T.S.)
- Institute of Medical Statistics and Informatics, 11000 Belgrade, Serbia
| | - Djurdja Jerotic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.B.); (D.J.); (A.S.-R.); (M.P.-E.); (T.D.); (M.E.); (M.A.); (T.S.)
- Institute of Medical and Clinical Biochemistry, 11000 Belgrade, Serbia
- Centre for Excellence for Redox Medicine, Pasterova 2, 11000 Belgrade, Serbia
| | - Ana Savic-Radojevic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.B.); (D.J.); (A.S.-R.); (M.P.-E.); (T.D.); (M.E.); (M.A.); (T.S.)
- Institute of Medical and Clinical Biochemistry, 11000 Belgrade, Serbia
- Centre for Excellence for Redox Medicine, Pasterova 2, 11000 Belgrade, Serbia
| | - Marija Pljesa-Ercegovac
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.B.); (D.J.); (A.S.-R.); (M.P.-E.); (T.D.); (M.E.); (M.A.); (T.S.)
- Institute of Medical and Clinical Biochemistry, 11000 Belgrade, Serbia
- Centre for Excellence for Redox Medicine, Pasterova 2, 11000 Belgrade, Serbia
| | - Tatjana Djukic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.B.); (D.J.); (A.S.-R.); (M.P.-E.); (T.D.); (M.E.); (M.A.); (T.S.)
- Institute of Medical and Clinical Biochemistry, 11000 Belgrade, Serbia
- Centre for Excellence for Redox Medicine, Pasterova 2, 11000 Belgrade, Serbia
| | - Marko Ercegovac
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.B.); (D.J.); (A.S.-R.); (M.P.-E.); (T.D.); (M.E.); (M.A.); (T.S.)
- Clinic of Neurology, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Milika Asanin
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.B.); (D.J.); (A.S.-R.); (M.P.-E.); (T.D.); (M.E.); (M.A.); (T.S.)
- Clinic of Cardiology, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Ivana Milosevic
- Clinic of Infectious and Tropical Diseases, University Clinical Centre of Serbia, 11000 Belgrade, Serbia; (M.M.); (J.R.); (I.M.); (G.S.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.B.); (D.J.); (A.S.-R.); (M.P.-E.); (T.D.); (M.E.); (M.A.); (T.S.)
| | - Goran Stevanovic
- Clinic of Infectious and Tropical Diseases, University Clinical Centre of Serbia, 11000 Belgrade, Serbia; (M.M.); (J.R.); (I.M.); (G.S.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.B.); (D.J.); (A.S.-R.); (M.P.-E.); (T.D.); (M.E.); (M.A.); (T.S.)
| | - Tatjana Simic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.B.); (D.J.); (A.S.-R.); (M.P.-E.); (T.D.); (M.E.); (M.A.); (T.S.)
- Institute of Medical and Clinical Biochemistry, 11000 Belgrade, Serbia
- Centre for Excellence for Redox Medicine, Pasterova 2, 11000 Belgrade, Serbia
- Department of Medical Sciences, Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia
| | - Vesna Coric
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.B.); (D.J.); (A.S.-R.); (M.P.-E.); (T.D.); (M.E.); (M.A.); (T.S.)
- Institute of Medical and Clinical Biochemistry, 11000 Belgrade, Serbia
- Centre for Excellence for Redox Medicine, Pasterova 2, 11000 Belgrade, Serbia
| | - Marija Matic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.B.); (D.J.); (A.S.-R.); (M.P.-E.); (T.D.); (M.E.); (M.A.); (T.S.)
- Institute of Medical and Clinical Biochemistry, 11000 Belgrade, Serbia
- Centre for Excellence for Redox Medicine, Pasterova 2, 11000 Belgrade, Serbia
| |
Collapse
|
4
|
Yazdanparast S, Bakhtiyaridovvombaygi M, Mikanik F, Ahmadi R, Ghorbani M, Mansoorian MR, Mansoorian M, Chegni H, Moshari J, Gharehbaghian A. Spotlight on contributory role of host immunogenetic profiling in SARS-CoV-2 infection: Susceptibility, severity, mortality, and vaccine effectiveness. Life Sci 2023:121907. [PMID: 37394094 DOI: 10.1016/j.lfs.2023.121907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND The SARS-CoV-2 virus has spread continuously worldwide, characterized by various clinical symptoms. The immune system responds to SARS-CoV-2 infection by producing Abs and secreting cytokines. Recently, numerous studies have highlighted that immunogenetic factors perform a putative role in COVID-19 pathogenesis and implicate vaccination effectiveness. AIM This review summarizes the relevant articles and evaluates the significance of mutation and polymorphism in immune-related genes regarding susceptibility, severity, mortality, and vaccination effectiveness of COVID-19. Furthermore, the correlation between host immunogenetic and SARS-CoV-2 reinfection is discussed. METHOD A comprehensive search was conducted to identify relevant articles using five databases until January 2023, which resulted in 105 total articles. KEY FINDINGS Taken to gather this review summarized that: (a) there is a plausible correlation between immune-related genes and COVID-19 outcomes, (b) the HLAs, cytokines, chemokines, and other immune-related genes expression profiles can be a prognostic factor in COVID-19-infected patients, and (c) polymorphisms in immune-related genes have been associated with the effectiveness of vaccination. SIGNIFICANCE Regarding the importance of mutation and polymorphisms in immune-related genes in COVID-19 outcomes, modulating candidate genes is expected to help clinical decisions, patient outcomes management, and innovative therapeutic approach development. In addition, the manipulation of host immunogenetics is hypothesized to induce more robust cellular and humoral immune responses, effectively increase the efficacy of vaccines, and subsequently reduce the incidence rates of reinfection-associated COVID-19.
Collapse
Affiliation(s)
- Somayeh Yazdanparast
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Bakhtiyaridovvombaygi
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mikanik
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Ahmadi
- Department of Infectious Diseases, School of Medicine, Infectious Diseases Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mohammad Ghorbani
- Laboratory Hematology and Transfusion Medicine, Department of Pathology, Faculty Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| | | | - Mozhgan Mansoorian
- Nursing Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Hamid Chegni
- Department of Immunology, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalil Moshari
- School of Medicine, Gonabad University of Medical Science, Gonabad, Iran
| | - Ahmad Gharehbaghian
- Department of Hematology and Blood Bank, School of Allied Medical Science, Shahid Beheshti University of Medical Science, Tehran, Iran; Pediatric Congenital Hematologic Disorders Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Mazari AMA, Zhang L, Ye ZW, Zhang J, Tew KD, Townsend DM. The Multifaceted Role of Glutathione S-Transferases in Health and Disease. Biomolecules 2023; 13:688. [PMID: 37189435 PMCID: PMC10136111 DOI: 10.3390/biom13040688] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
In humans, the cytosolic glutathione S-transferase (GST) family of proteins is encoded by 16 genes presented in seven different classes. GSTs exhibit remarkable structural similarity with some overlapping functionalities. As a primary function, GSTs play a putative role in Phase II metabolism by protecting living cells against a wide variety of toxic molecules by conjugating them with the tripeptide glutathione. This conjugation reaction is extended to forming redox sensitive post-translational modifications on proteins: S-glutathionylation. Apart from these catalytic functions, specific GSTs are involved in the regulation of stress-induced signaling pathways that govern cell proliferation and apoptosis. Recently, studies on the effects of GST genetic polymorphisms on COVID-19 disease development revealed that the individuals with higher numbers of risk-associated genotypes showed higher risk of COVID-19 prevalence and severity. Furthermore, overexpression of GSTs in many tumors is frequently associated with drug resistance phenotypes. These functional properties make these proteins promising targets for therapeutics, and a number of GST inhibitors have progressed in clinical trials for the treatment of cancer and other diseases.
Collapse
Affiliation(s)
- Aslam M. A. Mazari
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President Street, DDB410, Charleston, SC 29425, USA
| | - Leilei Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President Street, DDB410, Charleston, SC 29425, USA
| | - Zhi-Wei Ye
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President Street, DDB410, Charleston, SC 29425, USA
| | - Jie Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President Street, DDB410, Charleston, SC 29425, USA
| | - Kenneth D. Tew
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President Street, DDB410, Charleston, SC 29425, USA
| | - Danyelle M. Townsend
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, 274 Calhoun Street, MSC141, Charleston, SC 29425, USA
| |
Collapse
|
6
|
Orlewska K, Klusek J, Zarębska-Michaluk D, Kocańda K, Oblap R, Cedro A, Witczak B, Klusek J, Śliwczyński A, Orlewska E. Association between Glutathione S-Transferases Gene Variants and COVID-19 Severity in Previously Vaccinated and Unvaccinated Polish Patients with Confirmed SARS-CoV-2 Infection. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3752. [PMID: 36834445 PMCID: PMC9965089 DOI: 10.3390/ijerph20043752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
As the outcome of COVID-19 is associated with oxidative stress, it is highly probable that polymorphisms of genes related to oxidative stress were associated with susceptibility and severity of COVID-19. The aim of the study was to assess the association of glutathione S-transferases (GSTs) gene polymorphisms with COVID-19 severity in previously vaccinated and unvaccinated Polish patients with confirmed SARS-CoV-2 infection. A total of 92 not vaccinated and 84 vaccinated patients hospitalized due to COVID-19 were included. The WHO COVID-19 Clinical Progression Scale was used to assess COVID-19 severity. GSTs genetic polymorphisms were assessed by appropriate PCR methods. Univariable and multivariable analyses were performed, including logistic regression analysis. GSTP1 Ile/Val genotype was found to be associated with a higher risk of developing a severe form of the disease in the population of vaccinated patients with COVID-19 (OR: 2.75; p = 0.0398). No significant association was observed for any of the assessed GST genotypes with COVID-19 disease severity in unvaccinated patients with COVID-19. In this group of patients, BMI > 25 and serum glucose level > 99 mg% statistically significantly increased the odds towards more severe COVID-19. Our results may contribute to further understanding of risk factors of severe COVID-19 and selecting patients in need of strategies focusing on oxidative stress.
Collapse
Affiliation(s)
| | - Justyna Klusek
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland
| | | | - Kamila Kocańda
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland
| | - Ruslan Oblap
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland
| | - Anna Cedro
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland
| | - Bartosz Witczak
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland
| | - Jolanta Klusek
- Institute of Biology, Jan Kochanowski University, 25-406 Kielce, Poland
| | - Andrzej Śliwczyński
- Faculty of Medicine, Lazarski University, 02-662 Warsaw, Poland
- Central Clinical Hospital of the Ministry of Interior and Administration, 02-507 Warsaw, Poland
| | - Ewa Orlewska
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland
| |
Collapse
|
7
|
Francisco Junior RDS, Temerozo JR, Ferreira CDS, Martins Y, Souza TML, Medina-Acosta E, de Vasconcelos ATR. Differential haplotype expression in class I MHC genes during SARS-CoV-2 infection of human lung cell lines. Front Immunol 2023; 13:1101526. [PMID: 36818472 PMCID: PMC9929942 DOI: 10.3389/fimmu.2022.1101526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/19/2022] [Indexed: 02/05/2023] Open
Abstract
Introduction Cell entry of SARS-CoV-2 causes genome-wide disruption of the transcriptional profiles of genes and biological pathways involved in the pathogenesis of COVID-19. Expression allelic imbalance is characterized by a deviation from the Mendelian expected 1:1 expression ratio and is an important source of allele-specific heterogeneity. Expression allelic imbalance can be measured by allele-specific expression analysis (ASE) across heterozygous informative expressed single nucleotide variants (eSNVs). ASE reflects many regulatory biological phenomena that can be assessed by combining genome and transcriptome information. ASE contributes to the interindividual variability associated with the disease. We aim to estimate the transcriptome-wide impact of SARS-CoV-2 infection by analyzing eSNVs. Methods We compared ASE profiles in the human lung cell lines Calu-3, A459, and H522 before and after infection with SARS-CoV-2 using RNA-Seq experiments. Results We identified 34 differential ASE (DASE) sites in 13 genes (HLA-A, HLA-B, HLA-C, BRD2, EHD2, GFM2, GSPT1, HAVCR1, MAT2A, NQO2, SUPT6H, TNFRSF11A, UMPS), all of which are enriched in protein binding functions and play a role in COVID-19. Most DASE sites were assigned to the MHC class I locus and were predominantly upregulated upon infection. DASE sites in the MHC class I locus also occur in iPSC-derived airway epithelium basal cells infected with SARS-CoV-2. Using an RNA-Seq haplotype reconstruction approach, we found DASE sites and adjacent eSNVs in phase (i.e., predicted on the same DNA strand), demonstrating differential haplotype expression upon infection. We found a bias towards the expression of the HLA alleles with a higher binding affinity to SARS-CoV-2 epitopes. Discussion Independent of gene expression compensation, SARS-CoV-2 infection of human lung cell lines induces transcriptional allelic switching at the MHC loci. This suggests a response mechanism to SARS-CoV-2 infection that swaps HLA alleles with poor epitope binding affinity, an expectation supported by publicly available proteome data.
Collapse
Affiliation(s)
| | - Jairo R. Temerozo
- Laboratory on Thymus Research, Oswaldo Cruz Institute (Fiocruz), Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, Brazil
| | - Cristina dos Santos Ferreira
- Bioinformatics Laboratory (LABINFO), National Laboratory of Scientific Computation (LNCC/MCTIC), Petrópolis, Brazil
| | - Yasmmin Martins
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA), Buenos Aires, Argentina
| | - Thiago Moreno L. Souza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- Center for Technological Development in Health (CDTS), National Institute for Science and Technology on Innovation on Neglected Diseases Neglected Populations (INCT/IDNP), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Enrique Medina-Acosta
- Molecular Identification and Diagnostics Unit (NUDIM), Laboratory of Biotechnology, Center for Biosciences and Biotechnology, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Brazil
| | | |
Collapse
|
8
|
Tang C, Coelho AR, Rebelo M, Kiely-Collins H, Carvalho T, Bernardes GJL. A Selective SARS-CoV-2 Host-Directed Antiviral Targeting Stress Response to Reactive Oxygen Species. ACS CENTRAL SCIENCE 2023; 9:109-121. [PMID: 36712488 PMCID: PMC9881195 DOI: 10.1021/acscentsci.2c01243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 06/18/2023]
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) catalyzed the development of vaccines and antivirals. Clinically approved drugs against SARS-CoV-2 target the virus directly, which makes them susceptible to viral mutations, which in turn can attenuate their antiviral activity. Here we report a host-directed antiviral (HDA), piperlongumine (PL), which exhibits robust antiviral activity as a result of selective induction of reactive oxygen species in infected cells by GSTP1 inhibition. Using a transgenic K18-hACE2 mouse model, we benchmarked PL against plitidepsin, a HDA undergoing phase III clinical trials. We observed that intranasal administration of PL is superior in delaying disease progression and reducing lung inflammation. Importantly, we showed that PL is effective against several variants of concern (VOCs), making it an ideal pan-variant antiviral. PL may display a critical role as an intranasal treatment or prophylaxis against a range of viruses, expanding the arsenal of tools to fight future outbreaks.
Collapse
Affiliation(s)
- Cong Tang
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Ana R. Coelho
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Maria Rebelo
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Hannah Kiely-Collins
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Tânia Carvalho
- Champalimaud
Foundation, Avenida de Brasília, 1400-038, Lisboa, Portugal
| | - Gonçalo J. L. Bernardes
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
9
|
Pisoschi AM, Iordache F, Stanca L, Gajaila I, Ghimpeteanu OM, Geicu OI, Bilteanu L, Serban AI. Antioxidant, Anti-inflammatory, and Immunomodulatory Roles of Nonvitamin Antioxidants in Anti-SARS-CoV-2 Therapy. J Med Chem 2022; 65:12562-12593. [PMID: 36136726 PMCID: PMC9514372 DOI: 10.1021/acs.jmedchem.2c01134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Indexed: 11/28/2022]
Abstract
Viral pathologies encompass activation of pro-oxidative pathways and inflammatory burst. Alleviating overproduction of reactive oxygen species and cytokine storm in COVID-19 is essential to counteract the immunogenic damage in endothelium and alveolar membranes. Antioxidants alleviate oxidative stress, cytokine storm, hyperinflammation, and diminish the risk of organ failure. Direct antiviral roles imply: impact on viral spike protein, interference with the ACE2 receptor, inhibition of dipeptidyl peptidase 4, transmembrane protease serine 2 or furin, and impact on of helicase, papain-like protease, 3-chyomotrypsin like protease, and RNA-dependent RNA polymerase. Prooxidative environment favors conformational changes in the receptor binding domain, promoting the affinity of the spike protein for the host receptor. Viral pathologies imply a vicious cycle, oxidative stress promoting inflammatory responses, and vice versa. The same was noticed with respect to the relationship antioxidant impairment-viral replication. Timing, dosage, pro-oxidative activities, mutual influences, and interference with other antioxidants should be carefully regarded. Deficiency is linked to illness severity.
Collapse
Affiliation(s)
- Aurelia Magdalena Pisoschi
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
| | - Florin Iordache
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
| | - Loredana Stanca
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
| | - Iuliana Gajaila
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
| | - Oana Margarita Ghimpeteanu
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
| | - Ovidiu Ionut Geicu
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
- Faculty of Biology, Department Biochemistry and
Molecular Biology, University of Bucharest, 91-95 Splaiul
Independentei, 050095Bucharest, Romania
| | - Liviu Bilteanu
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
- Molecular Nanotechnology Laboratory,
National Institute for Research and Development in
Microtechnologies, 126A Erou Iancu Nicolae Street, 077190Bucharest,
Romania
| | - Andreea Iren Serban
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
- Faculty of Biology, Department Biochemistry and
Molecular Biology, University of Bucharest, 91-95 Splaiul
Independentei, 050095Bucharest, Romania
| |
Collapse
|
10
|
Tsermpini EE, Glamočlija U, Ulucan-Karnak F, Redenšek Trampuž S, Dolžan V. Molecular Mechanisms Related to Responses to Oxidative Stress and Antioxidative Therapies in COVID-19: A Systematic Review. Antioxidants (Basel) 2022; 11:1609. [PMID: 36009328 PMCID: PMC9405444 DOI: 10.3390/antiox11081609] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022] Open
Abstract
The coronavirus disease (COVID-19) pandemic is a leading global health and economic challenge. What defines the disease's progression is not entirely understood, but there are strong indications that oxidative stress and the defense against reactive oxygen species are crucial players. A big influx of immune cells to the site of infection is marked by the increase in reactive oxygen and nitrogen species. Our article aims to highlight the critical role of oxidative stress in the emergence and severity of COVID-19 and, more importantly, to shed light on the underlying molecular and genetic mechanisms. We have reviewed the available literature and clinical trials to extract the relevant genetic variants within the oxidative stress pathway associated with COVID-19 and the anti-oxidative therapies currently evaluated in the clinical trials for COVID-19 treatment, in particular clinical trials on glutathione and N-acetylcysteine.
Collapse
Affiliation(s)
- Evangelia Eirini Tsermpini
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Una Glamočlija
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
- School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Fulden Ulucan-Karnak
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, Bornova, 35100 İzmir, Turkey
| | - Sara Redenšek Trampuž
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
11
|
Antioxidant Genetic Profile Modifies Probability of Developing Neurological Sequelae in Long-COVID. Antioxidants (Basel) 2022; 11:antiox11050954. [PMID: 35624818 PMCID: PMC9138155 DOI: 10.3390/antiox11050954] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 02/06/2023] Open
Abstract
Understanding the sequelae of COVID-19 is of utmost importance. Neuroinflammation and disturbed redox homeostasis are suggested as prevailing underlying mechanisms in neurological sequelae propagation in long-COVID. We aimed to investigate whether variations in antioxidant genetic profile might be associated with neurological sequelae in long-COVID. Neurological examination and antioxidant genetic profile (SOD2, GPXs and GSTs) determination, as well as, genotype analysis of Nrf2 and ACE2, were conducted on 167 COVID-19 patients. Polymorphisms were determined by the appropriate PCR methods. Only polymorphisms in GSTP1AB and GSTO1 were independently associated with long-COVID manifestations. Indeed, individuals carrying GSTP1 Val or GSTO1 Asp allele exhibited lower odds of long-COVID myalgia development, both independently and in combination. Furthermore, the combined presence of GSTP1 Ile and GSTO1 Ala alleles exhibited cumulative risk regarding long-COVID myalgia in carriers of the combined GPX1 LeuLeu/GPX3 CC genotype. Moreover, individuals carrying combined GSTM1-null/GPX1LeuLeu genotype were more prone to developing long-COVID “brain fog”, while this probability further enlarged if the Nrf2 A allele was also present. The fact that certain genetic variants of antioxidant enzymes, independently or in combination, affect the probability of long-COVID manifestations, further emphasizes the involvement of genetic susceptibility when SARS-CoV-2 infection is initiated in the host cells, and also months after.
Collapse
|
12
|
Jerotic D, Ranin J, Bukumiric Z, Djukic T, Coric V, Savic-Radojevic A, Todorovic N, Asanin M, Ercegovac M, Milosevic I, Pljesa-Ercegovac M, Stevanovic G, Matic M, Simic T. SOD2 rs4880 and GPX1 rs1050450 polymorphisms do not confer risk of COVID-19, but influence inflammation or coagulation parameters in Serbian cohort. Redox Rep 2022; 27:85-91. [PMID: 35361071 PMCID: PMC8979533 DOI: 10.1080/13510002.2022.2057707] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Objectives: Due to the role of oxidative stress in the pathophysiology of COVID-19, it is biologically plausible that inter-individual differences in patients' clinical manifestations might be affected by antioxidant genetic profile. The aim of our study was to assess the distribution of antioxidant genetic polymorphisms Nrf2 rs6721961, SOD2 rs4880, GPX1 rs1050450, GPX3 rs8177412, and GSTP1 (rs1695 and rs1138272) haplotype in COVID-19 patients and controls, with special emphasis on their association with laboratory biochemical parameters.Methods: The antioxidant genetic polymorphisms were assessed by appropriate PCR methods in 229 COVID-19 patients and 229 matched healthy individuals.Results: Among examined polymorphisms, only GSTP1 haplotype was associated with COVID-19 risk (p = 0.009). Polymorphisms of SOD2 and GPX1 influenced COVID-19 patients' laboratory biochemical profile: SOD2*Val allele was associated with increased levels of fibrinogen (p = 0.040) and ferritin (p = 0.033), whereas GPX1*Leu allele was associated with D-dimmer (p = 0.009).Discussion: Our findings regarding the influence of SOD2 and GPX1 polymorphisms on inflammation and coagulation parameters might be of clinical importance. If confirmed in larger cohorts, these developments could provide a more personalized approach for better recognition of patients prone to thrombosis and those for the need of targeted antiox-idant therapy.
Collapse
Affiliation(s)
- Djurdja Jerotic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jovan Ranin
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Clinic of Infectious and Tropical Diseases, Clinical Centre of Serbia, Belgrade, Serbia
| | - Zoran Bukumiric
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Institute of Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Tatjana Djukic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vesna Coric
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ana Savic-Radojevic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nevena Todorovic
- Clinic of Infectious and Tropical Diseases, Clinical Centre of Serbia, Belgrade, Serbia
| | - Milika Asanin
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Clinic of Cardiology, Clinical Centre of Serbia, Belgrade, Serbia
| | - Marko Ercegovac
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Clinic of Neurology, Clinical Centre of Serbia, Belgrade, Serbia
| | - Ivana Milosevic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Clinic of Infectious and Tropical Diseases, Clinical Centre of Serbia, Belgrade, Serbia
| | - Marija Pljesa-Ercegovac
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Goran Stevanovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Clinic of Infectious and Tropical Diseases, Clinical Centre of Serbia, Belgrade, Serbia
| | - Marija Matic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Tatjana Simic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Serbian Academy of Sciences and Arts, Belgrade, Serbia
| |
Collapse
|