1
|
Wang L, Xu W, Zhang S, Gundberg GC, Zheng CR, Wan Z, Mustafina K, Caliendo F, Sandt H, Kamm R, Weiss R. Sensing and guiding cell-state transitions by using genetically encoded endoribonuclease-mediated microRNA sensors. Nat Biomed Eng 2024; 8:1730-1743. [PMID: 38982158 DOI: 10.1038/s41551-024-01229-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/11/2024] [Indexed: 07/11/2024]
Abstract
Precisely sensing and guiding cell-state transitions via the conditional genetic activation of appropriate differentiation factors is challenging. Here we show that desired cell-state transitions can be guided via genetically encoded sensors, whereby endogenous cell-state-specific miRNAs regulate the translation of a constitutively transcribed endoribonuclease, which, in turn, controls the translation of a gene of interest. We used this approach to monitor several cell-state transitions, to enrich specific cell types and to automatically guide the multistep differentiation of human induced pluripotent stem cells towards a haematopoietic lineage via endothelial cells as an intermediate state. Such conditional activation of gene expression is durable and resistant to epigenetic silencing and could facilitate the monitoring of cell-state transitions in physiological and pathological conditions and eventually the 'rewiring' of cell-state transitions for applications in organoid-based disease modelling, cellular therapies and regenerative medicine.
Collapse
Affiliation(s)
- Lei Wang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Bioengineering, Northeastern University, Boston, MA, USA.
- Department of Biology, Northeastern University, Boston, MA, USA.
| | - Wenlong Xu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shun Zhang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Gregory C Gundberg
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christine R Zheng
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhengpeng Wan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kamila Mustafina
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Fabio Caliendo
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hayden Sandt
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Roger Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ron Weiss
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
2
|
Jacobs W, Khalifeh M, Koot M, Palacio-Castañeda V, van Oostrum J, Ansems M, Verdurmen WPR, Brock R. RNA-based logic for selective protein expression in senescent cells. Int J Biochem Cell Biol 2024; 174:106636. [PMID: 39089613 DOI: 10.1016/j.biocel.2024.106636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/21/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Cellular senescence is a cellular state characterized by irreversible growth arrest, resistance to apoptosis and secretion of inflammatory molecules, which is causally linked to the pathogenesis of many age-related diseases. Besides, there is accumulating evidence that selective removal of senescent cells can benefit therapies for cancer and fibrosis by modulating the inflammatory microenvironment. While the field of so-called senolytics has spawned promising small molecules and peptides for the selective removal of senescent cells, there is still no effective means to detect senescent cells in vivo, a prerequisite for understanding the role of senescence in pathophysiology and to assess the effectiveness of treatments aimed at removing senescent cells. Here, we present a strategy based on an mRNA logic circuit, that yields mRNA-dependent protein expression only when a senescence-specific miRNA signature is present. Following a validation of radiation-induced senescence induction in primary human fibroblasts, we identify miRNAs up- and downregulated in association with cellular senescence using RT-qPCR. Incorporating binding sites to these miRNAs into the 3' untranslated regions of the mRNA logic circuit, we demonstrate the senescence-specific expression of EGFP for detection of senescent cells and of a constitutively active caspase-3 for selective removal. Altogether, our results pave the way for a novel approach to execute an mRNA-based programme specifically in senescent cells aimed at their detection or selective removal.
Collapse
Affiliation(s)
- Ward Jacobs
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands
| | - Masoomeh Khalifeh
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands
| | - Merijn Koot
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands
| | | | - Jenny van Oostrum
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands
| | - Marleen Ansems
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands
| | - Wouter P R Verdurmen
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands
| | - Roland Brock
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands; Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain.
| |
Collapse
|
3
|
van Wijk N, Zohar K, Linial M. Challenging Cellular Homeostasis: Spatial and Temporal Regulation of miRNAs. Int J Mol Sci 2022; 23:16152. [PMID: 36555797 PMCID: PMC9787707 DOI: 10.3390/ijms232416152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Mature microRNAs (miRNAs) are single-stranded non-coding RNA (ncRNA) molecules that act in post-transcriptional regulation in animals and plants. A mature miRNA is the end product of consecutive, highly regulated processing steps of the primary miRNA transcript. Following base-paring of the mature miRNA with its mRNA target, translation is inhibited, and the targeted mRNA is degraded. There are hundreds of miRNAs in each cell that work together to regulate cellular key processes, including development, differentiation, cell cycle, apoptosis, inflammation, viral infection, and more. In this review, we present an overlooked layer of cellular regulation that addresses cell dynamics affecting miRNA accessibility. We discuss the regulation of miRNA local storage and translocation among cell compartments. The local amounts of the miRNAs and their targets dictate their actual availability, which determines the ability to fine-tune cell responses to abrupt or chronic changes. We emphasize that changes in miRNA storage and compactization occur under induced stress and changing conditions. Furthermore, we demonstrate shared principles on cell physiology, governed by miRNA under oxidative stress, tumorigenesis, viral infection, or synaptic plasticity. The evidence presented in this review article highlights the importance of spatial and temporal miRNA regulation for cell physiology. We argue that limiting the research to mature miRNAs within the cytosol undermines our understanding of the efficacy of miRNAs to regulate cell fate under stress conditions.
Collapse
Affiliation(s)
| | | | - Michal Linial
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
4
|
Zohar K, Giladi E, Eliyahu T, Linial M. Oxidative Stress and Its Modulation by Ladostigil Alter the Expression of Abundant Long Non-Coding RNAs in SH-SY5Y Cells. Noncoding RNA 2022; 8:ncrna8060072. [PMID: 36412908 PMCID: PMC9680243 DOI: 10.3390/ncrna8060072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative disorders, brain injury, and the decline in cognitive function with aging are accompanied by a reduced capacity of cells in the brain to cope with oxidative stress and inflammation. In this study, we focused on the response to oxidative stress in SH-SY5Y, a human neuroblastoma cell line. We monitored the viability of the cells in the presence of oxidative stress. Such stress was induced by hydrogen peroxide or by Sin1 (3-morpholinosydnonimine) that generates reactive oxygen and nitrogen species (ROS and RNS). Both stressors caused significant cell death. Our results from the RNA-seq experiments show that SH-SY5Y cells treated with Sin1 for 24 h resulted in 94 differently expressed long non-coding RNAs (lncRNAs), including many abundant ones. Among the abundant lncRNAs that were upregulated by exposing the cells to Sin1 were those implicated in redox homeostasis, energy metabolism, and neurodegenerative diseases (e.g., MALAT1, MIAT, GABPB1-AS1, NEAT1, MIAT, GABPB1-AS1, and HAND2-AS1). Another group of abundant lncRNAs that were significantly altered under oxidative stress included cancer-related SNHG family members. We tested the impact of ladostigil, a bifunctional reagent with antioxidant and anti-inflammatory properties, on the lncRNA expression levels. Ladostigil was previously shown to enhance learning and memory in the brains of elderly rats. In SH-SY5Y cells, several lncRNAs involved in transcription regulation and the chromatin structure were significantly induced by ladostigil. We anticipate that these poorly studied lncRNAs may act as enhancers (eRNA), regulating transcription and splicing, and in competition for miRNA binding (ceRNA). We found that the induction of abundant lncRNAs, such as MALAT1, NEAT-1, MIAT, and SHNG12, by the Sin1 oxidative stress paradigm specifies only the undifferentiated cell state. We conclude that a global alteration in the lncRNA profiles upon stress in SH-SY5Y may shift cell homeostasis and is an attractive in vitro system to characterize drugs that impact the redox state of the cells and their viability.
Collapse
|
5
|
Ofer D, Linial M. Inferring microRNA regulation: A proteome perspective. Front Mol Biosci 2022; 9:916639. [PMID: 36158574 PMCID: PMC9493312 DOI: 10.3389/fmolb.2022.916639] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Post-transcriptional regulation in multicellular organisms is mediated by microRNAs. However, the principles that determine if a gene is regulated by miRNAs are poorly understood. Previous works focused mostly on miRNA seed matches and other features of the 3′-UTR of transcripts. These common approaches rely on knowledge of the miRNA families, and computational approaches still yield poor, inconsistent results, with many false positives. In this work, we present a different paradigm for predicting miRNA-regulated genes based on the encoded proteins. In a novel, automated machine learning framework, we use sequence as well as diverse functional annotations to train models on multiple organisms using experimentally validated data. We present insights from tens of millions of features extracted and ranked from different modalities. We show high predictive performance per organism and in generalization across species. We provide a list of novel predictions including Danio rerio (zebrafish) and Arabidopsis thaliana (mouse-ear cress). We compare genomic models and observe that our protein model outperforms, whereas a unified model improves on both. While most membranous and disease related proteins are regulated by miRNAs, the G-protein coupled receptor (GPCR) family is an exception, being mostly unregulated by miRNAs. We further show that the evolutionary conservation among paralogs does not imply any coherence in miRNA regulation. We conclude that duplicated paralogous genes that often changed their function, also diverse in their tendency to be miRNA regulated. We conclude that protein function is informative across species in predicting post-transcriptional miRNA regulation in living cells.
Collapse
|