1
|
Harding BD, Hu Z, Hiett A, Delaglio F, Henzler-Wildman K, Rienstra CM. Enhancing Spectrometer Performance with Unsupervised Machine Learning. J Phys Chem B 2024; 128:10397-10407. [PMID: 39395040 PMCID: PMC11550512 DOI: 10.1021/acs.jpcb.4c05109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Solid-state NMR spectroscopy (SSNMR) is a powerful technique to probe structural and dynamic properties of biomolecules at an atomic level. Modern SSNMR methods employ multidimensional pulse sequences requiring data collection over a period of days to weeks. Variations in signal intensity or frequency due to environmental fluctuation introduce artifacts into the spectra. Therefore, it is critical to actively monitor instrumentation subject to fluctuations. Here, we demonstrate a method rooted in the unsupervised machine learning algorithm principal component analysis (PCA) to evaluate the impact of environmental parameters that affect sensitivity, resolution and peak positions (chemical shifts) in multidimensional SSNMR protein spectra. PCA loading spectra illustrate the unique features associated with each drifting parameter, while the PCA scores quantify the magnitude of parameter drift. This is demonstrated both for double (HC) and triple resonance (HCN) experiments. Furthermore, we apply this methodology to identify magnetic field B0 drift, and leverage PCA to "denoise" multidimensional SSNMR spectra of the membrane protein, EmrE, using several spectra collected over several days. Finally, we utilize PCA to identify changes in B1 (CP and decoupling) and B0 fields in a manner that we envision could be automated in the future. Overall, these approaches enable improved objectivity in monitoring NMR spectrometers, and are also applicable to other forms of spectroscopy.
Collapse
Affiliation(s)
- Benjamin D. Harding
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI, 53706 USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
| | - Ziling Hu
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
| | - Ashley Hiett
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI, 53706 USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
| | - Frank Delaglio
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, MD, 20850 USA
| | - Katherine Henzler-Wildman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706 USA
| | - Chad M. Rienstra
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI, 53706 USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706 USA
- Morgridge Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53706 USA
| |
Collapse
|
2
|
van Aalst EJ, Yekefallah M, A. M. van Beekveld R, Breukink E, Weingarth M, Wylie BJ. Coordination of bilayer properties by an inward-rectifier K + channel is a cooperative process driven by protein-lipid interaction. J Struct Biol X 2024; 9:100101. [PMID: 38883399 PMCID: PMC11176924 DOI: 10.1016/j.yjsbx.2024.100101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024] Open
Abstract
Physical properties of biological membranes directly or indirectly govern biological processes. Yet, the interplay between membrane and integral membrane proteins is difficult to assess due to reciprocal effects between membrane proteins, individual lipids, and membrane architecture. Using solid-state NMR (SSNMR) we previously showed that KirBac1.1, a bacterial Inward-Rectifier K+ channel, nucleates bilayer ordering and microdomain formation through tethering anionic lipids. Conversely, these lipids cooperatively bind cationic residues to activate the channel and initiate K+ flux. The mechanistic details governing the relationship between cooperative lipid loading and bilayer ordering are, however, unknown. To investigate, we generated KirBac1.1 samples with different concentrations of 13C-lableded phosphatidyl glycerol (PG) lipids and acquired a full suite of SSNMR 1D temperature series experiments using the ordered all-trans (AT) and disordered trans-gauche (TG) acyl conformations as markers of bilayer dynamics. We observed increased AT ordered signal, decreased TG disordered signal, and increased bilayer melting temperature with increased PG concentration. Further, we identified cooperativity between ordering and direct binding of PG lipids, indicating KirBac1.1-driven bilayer ordering and microdomain formation is a classically cooperative Hill-type process driven by and predicated upon direct binding of PG lipids. Our results provide unique mechanistic insight into how proteins and lipids in tandem contribute to supramolecular bilayer heterogeneity in the lipid membrane.
Collapse
Affiliation(s)
- Evan J. van Aalst
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Maryam Yekefallah
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Roy A. M. van Beekveld
- Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Markus Weingarth
- Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Benjamin J. Wylie
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
3
|
Yekefallah M, van Aalst EJ, van Beekveld RAM, Eason IR, Breukink E, Weingarth M, Wylie BJ. Cooperative Gating of a K + Channel by Unmodified Biological Anionic Lipids Viewed by Solid-State NMR Spectroscopy. J Am Chem Soc 2024; 146:4421-4432. [PMID: 38334076 PMCID: PMC10885140 DOI: 10.1021/jacs.3c09266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
Lipids adhere to membrane proteins to stimulate or suppress molecular and ionic transport and signal transduction. Yet, the molecular details of lipid-protein interaction and their functional impact are poorly characterized. Here we combine NMR, coarse-grained molecular dynamics (CGMD), and functional assays to reveal classic cooperativity in the binding and subsequent activation of a bacterial inward rectifier potassium (Kir) channel by phosphatidylglycerol (PG), a common component of many membranes. Past studies of lipid activation of Kir channels focused primarily on phosphatidylinositol bisphosphate, a relatively rare signaling lipid that is tightly regulated in space and time. We use solid-state NMR to quantify the binding of unmodified 13C-PG to the K+ channel KirBac1.1 in liposomes. This specific lipid-protein interaction has a dissociation constant (Kd) of ∼7 mol percentage PG (ΧPG) with positive cooperativity (n = 3.8) and approaches saturation near 20% ΧPG. Liposomal flux assays show that K+ flux also increases with PG in a cooperative manner with an EC50 of ∼20% ΧPG, within the physiological range. Further quantitative fitting of these data reveals that PG acts as a partial (80%) agonist with fivefold K+ flux amplification. Comparisons of NMR chemical shift perturbation and CGMD simulations at different ΧPG confirm the direct interaction of PG with key residues, several of which would not be accessible to lipid headgroups in the closed state of the channel. Allosteric regulation by a common lipid is directly relevant to the activation mechanisms of several human ion channels. This study highlights the role of concentration-dependent lipid-protein interactions and tightly controlled protein allostery in the activation and regulation of ion channels.
Collapse
Affiliation(s)
- Maryam Yekefallah
- Department
of Chemistry and Biochemistry, Texas Tech
University, Lubbock, Texas 79409, United States
| | - Evan J. van Aalst
- Department
of Chemistry and Biochemistry, Texas Tech
University, Lubbock, Texas 79409, United States
| | - Roy A. M. van Beekveld
- Department
of Chemistry, Faculty of Science, Utrecht
University, Padualaan 8, Utrecht3584
CH, The Netherlands
| | - Isaac R. Eason
- Department
of Chemistry and Biochemistry, Texas Tech
University, Lubbock, Texas 79409, United States
| | - Eefjan Breukink
- Membrane
Biochemistry and Biophysics, Department of Chemistry, Utrecht University, Padualaan 8, Utrecht 3584
CH, The Netherlands
| | - Markus Weingarth
- Department
of Chemistry, Faculty of Science, Utrecht
University, Padualaan 8, Utrecht3584
CH, The Netherlands
| | - Benjamin J. Wylie
- Department
of Chemistry and Biochemistry, Texas Tech
University, Lubbock, Texas 79409, United States
| |
Collapse
|
4
|
Yekefallah M, Rasberry CA, van Aalst EJ, Browning HP, Amani R, Versteeg DB, Wylie BJ. Mutational Insight into Allosteric Regulation of Kir Channel Activity. ACS OMEGA 2022; 7:43621-43634. [PMID: 36506180 PMCID: PMC9730464 DOI: 10.1021/acsomega.2c04456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/10/2022] [Indexed: 06/08/2023]
Abstract
Potassium (K+) channels are regulated in part by allosteric communication between the helical bundle crossing, or inner gate, and the selectivity filter, or outer gate. This network is triggered by gating stimuli. In concert, there is an allosteric network which is a conjugated set of interactions which correlate long-range structural rearrangements necessary for channel function. Inward-rectifier K+ (Kir) channels favor inward K+ conductance, are ligand-gated, and help establish resting membrane potentials. KirBac1.1 is a bacterial Kir (KirBac) channel homologous to human Kir (hKir) channels. Additionally, KirBac1.1 is gated by the anionic phospholipid ligand phosphatidylglycerol (PG). In this study, we use site-directed mutagenesis to investigate residues involved in the KirBac1.1 gating mechanism and allosteric network we previously proposed using detailed solid-state NMR (SSNMR) measurements. Using fluorescence-based K+ and sodium (Na+) flux assays, we identified channel mutants with impaired function that do not alter selectivity of the channel. In tandem, we performed coarse grain molecular dynamics simulations, observing changes in PG-KirBac1.1 interactions correlated with mutant channel activity and contacts between the two transmembrane helices and pore helix tied to this behavior. Lipid affinity is closely tied to the proximity of two tryptophan residues on neighboring subunits which lure anionic lipids to a cationic pocket formed by a cluster of arginine residues. Thus, these simulations establish a structural and functional basis for the role of each mutated site in the proposed allosteric network. The experimental and simulated data provide insight into key functional residues involved in gating and lipid allostery of K+ channels. Our findings also have direct implications on the physiology of hKir channels due to conservation of many of the residues identified in this work from KirBac1.1.
Collapse
Affiliation(s)
- Maryam Yekefallah
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas79409, United States
| | - Carver A. Rasberry
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas79409, United States
| | - Evan J. van Aalst
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas79409, United States
| | - Holley P. Browning
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas79409, United States
| | - Reza Amani
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas79409, United States
| | - Derek B. Versteeg
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas79409, United States
| | - Benjamin J. Wylie
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas79409, United States
| |
Collapse
|