1
|
Ray Gupta SB, Sraboni FS, Naznin T, Biswas S, Islam S, Alarjani KM, Zaman S, Saleh MA. Harnessing Enterococcus faecium WFD-128 from yogurt fermentation: Unveiling probiotic attributes and targeted inhibition of Shigella sonnei diarrheal pathogenesis. Microb Pathog 2025; 204:107561. [PMID: 40210138 DOI: 10.1016/j.micpath.2025.107561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Diarrhea is a leading cause of mortality among children under five, with few effective interventions beyond oral rehydration, antibiotics, and zinc supplementation. This study aimed to identify and evaluate the probiotic and anti-diarrheal potential of Enterococcus faecium WFD-128, isolated from fermented yogurt, through in vitro, in silico, and in vivo approaches. The bacterium showed notable antibacterial activity, with inhibition zones measuring 21 mm and 19 mm against Shigella flexneri and Shigella sonnei, respectively. Additionally, it exhibited anti-biofilm effectiveness of 82 % and 80 % against these pathogens. It exhibited resistance to Amoxicillin, intermediate sensitivity to Ampicillin and Chloramphenicol, and tolerance to bile salts over 3-48h, and to acidic pH levels ranging from 2 to 8. Gas Chromatography-Mass Spectrometry (GC-MS) identified 68 volatile compounds, of which [1,1'-Bicyclohexyl]-4-carboxylic acid, 4'-propyl-, 4-fluorophenyl ester (-8.5) and Cholest-4-en-26-oic acid, 3-oxo-, methyl ester (-7.9) showed strong binding affinities to the diarrheal protein T3SS of Shigella sonnei (PDB: 6WRY) in molecular docking studies. These compounds exhibited favorable pharmaceutical properties in ADMET analysis, further supported by molecular dynamics simulations. In vivo experiments with albino mice validated the bacterium's therapeutic potential. Histopathological analysis revealed significant recovery of diarrhea-affected organs, including the kidney, liver, intestine, and spleen, following treatment with E. faecium. This aligns with in vitro and in silico findings, demonstrating the bacterium's therapeutic effectiveness. This study highlights the promise of E. faecium as a probiotic-based treatment against bacteria-induced diarrhea, offering a strong foundation for the development of innovative anti-diarrheal therapeutics.
Collapse
Affiliation(s)
- Swagota Briti Ray Gupta
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Farzana Sayed Sraboni
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Taslima Naznin
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Suvro Biswas
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Shirmin Islam
- Department of Biological Sciences, Binghamton University, Binghamton, NY, 13902, USA
| | - Khaloud Mohammed Alarjani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shahriar Zaman
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| | - Md Abu Saleh
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
2
|
Yu X, Li G, Dou S, Zhou S, Liu X, Zhou D. Molecular interactions and physiological effects of oyster-derived synthetic peptide-calcium complex: Insight in improving the bone growth and health. Food Res Int 2025; 212:116516. [PMID: 40382079 DOI: 10.1016/j.foodres.2025.116516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/12/2025] [Accepted: 04/21/2025] [Indexed: 05/20/2025]
Abstract
In this study, the oyster-derived synthetic peptide VAPEEHPV (V) was utilized to prepare the VCa complex with calcium ions. The results from frontier orbital analysis, molecular docking, and molecular dynamics simulations indicated that the primary binding sites were the carboxyl oxygen of Glu and the amide bond oxygen of Ala and Pro, while the VCa complex demonstrated stability in aqueous environments. Furthermore, various characterization techniques revealed that, in comparison to peptide V, VCa exhibited a decrease in UV absorption intensity and β-sheet content, an increase in particle size (from 720 to 1265 nm), enhanced thermal stability, and a rougher surface morphology. In a calcium deficiency mouse model, a medium dose of VCa improved the structure of the small intestinal villi, increased serum calcium levels (4.11 mmol/L) and phosphorus levels (2.01 mmol/L), and reduced alkaline phosphatase (AKP) levels (49.4 King Units/100 mL). Regarding bone quality, a high dose of VCa, superior to CaCO3, significantly increased bone calcium content (femur: 178.57 mg/g, tibia: 178.59 mg/g) and bone density (femur: 1.67 g/cm3, tibia: 1.82 g/cm3). The deterioration of osteoclasts and tissue inflammation induced by calcium deficiency was markedly improved, and the thickness of the bone cortex increased to 713.91 μm.
Collapse
Affiliation(s)
- Xuening Yu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Guang Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Shijie Dou
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Shuling Zhou
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoyang Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Dayong Zhou
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
3
|
Prashar N, Mohammed SB, Raja NS, Mohideen HS. Rerouting therapeutic peptides and unlocking their potential against SARS-CoV2. 3 Biotech 2025; 15:116. [PMID: 40191455 PMCID: PMC11971104 DOI: 10.1007/s13205-025-04270-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/10/2025] [Indexed: 04/09/2025] Open
Abstract
The COVID-19 pandemic highlighted the potential of peptide-based therapies as an alternative to traditional pharmaceutical treatments for SARS-CoV-2 and its variants. Our review explores the role of therapeutic peptides in modulating immune responses, inhibiting viral entry, and disrupting replication. Despite challenges such as stability, bioavailability, and the rapid mutation of the virus, ongoing research and clinical trials show that peptide-based treatments are increasingly becoming integral to future viral outbreak responses. Advancements in computational modelling methods in combination with artificial intelligence will enable mass screening of therapeutic peptides and thereby, comprehending a peptide repurposing strategy similar to the small molecule repurposing. These findings suggest that peptide-based therapies play a critical and promising role in future pandemic preparedness and outbreak management.
Collapse
Affiliation(s)
- Namrata Prashar
- Bioinformatics and Entomoinformatics Lab, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Chennai, Tamil Nadu 603203 India
| | - Saharuddin Bin Mohammed
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - N. S. Raja
- Deparmtent of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Chennai, Tamil Nadu 603203 India
| | - Habeeb Shaik Mohideen
- Bioinformatics and Entomoinformatics Lab, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Chennai, Tamil Nadu 603203 India
| |
Collapse
|
4
|
Shao L, Gong J, Dong Y, Liu S, Xu X, Wang H. Hydrolyzing collagen by extracellular protease Hap of Aeromonas salmonicida: Turning chicken by-products into bioactive resources. Food Chem 2025; 471:142778. [PMID: 39823902 DOI: 10.1016/j.foodchem.2025.142778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/14/2024] [Accepted: 01/03/2025] [Indexed: 01/20/2025]
Abstract
Collagen-rich meat processing by-products have potential utilization value. Extracellular protease Hap from meat-borne Aeromonas salmonicida has been identified as an ideal protease for hydrolyzing collagen. Here, to explore the possible application of Hap for giving chicken by-products a high added value, the hydrolysis ability and mechanism were investigated. With a Vmax of 31.9 μg/mL/min and a Km of 1.18 mg/mL, Hap demonstrated obvious substrate specificity to pepsin-solubilized collagen (PSC) derived from chicken by-products, and significantly affected the tertiary structure and microstructure of PSC. Hap was found to preferentially cleave the peptide bond between Gly-X by peptide release kinetics, attacking from two ends to the middle region for α1 chain. Sixteen peptides are anticipated to be non-toxic with twenty potential biological activities at the end of hydrolysis. These observations will enrich the collagen hydrolysis mechanism of protease secreted by meat-borne bacteria and provide new insights into the utilization of meat by-products.
Collapse
Affiliation(s)
- Liangting Shao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Junming Gong
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yang Dong
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Silu Liu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xinglian Xu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Huhu Wang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
5
|
Biswas S, Mita MA, Islam S, Biswas S, Akhtar-E-Ekram M, Zaman S, Uddin MS, Saleh MA. Prospective role of lupeol from Pterocarpus santalinus leaf against diabetes: An in vitro, in silico, and in vivo investigation. Comput Biol Med 2025; 186:109680. [PMID: 39842236 DOI: 10.1016/j.compbiomed.2025.109680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 01/04/2025] [Accepted: 01/12/2025] [Indexed: 01/24/2025]
Abstract
Diabetes mellitus (DM) can be treated with various medications. However, individuals in underdeveloped countries may face challenges in using these treatments due to side effects and high costs. Anti-diabetic medications can inhibit enzymes, such as α-amylase, which is responsible for breaking down carbohydrates. In this investigation, 16 phytoconstituents were identified from Pterocarpus santalinus leaf extract through GC-MS analysis, and their significant antioxidant activities were noted. Among these, the pure compound lupeol demonstrated α-amylase inhibition activity of 86.13 ± 1.27 % (IC50 = 58.50 ± 0.83 μg/mL) in vitro. Additionally, lupeol showed the highest binding affinity in silico using PyRx and CB-Dock, with values of -9.5 and -9.3 kcal/mol, respectively. The in silico analysis also indicated that lupeol possesses acceptable ADMET properties, suggesting its potential as an anti-diabetic drug. A molecular dynamics simulation lasting 500 ns was conducted to evaluate hydrogen bonds, RMSF, RMSD, Rg, and SASA, confirming the stability and integrity of the docking scenarios. In STZ-induced diabetic mice, lupeol significantly reduced blood glucose levels by 70.82 % from day 0 to day 28. Furthermore, lupeol markedly decreased total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C), while improving high-density lipoprotein cholesterol (HDL-C) levels in these mice. The antidiabetic effect of lupeol was further validated through histological examinations of the pancreas, heart, kidney, and liver of treated mice, alongside correlation analysis, CAP, and ANOSIM tests. Based on the findings from the in vitro, in silico, and in vivo investigations, this study concludes that lupeol may have potential anti-diabetic effects through the inhibition of the α-amylase enzyme.
Collapse
Affiliation(s)
- Suvro Biswas
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Mohasana Akter Mita
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Shirmin Islam
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Shovon Biswas
- Department of Industrial and Production Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Md Akhtar-E-Ekram
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Shahriar Zaman
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Salah Uddin
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Abu Saleh
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
6
|
Barozi V, Tastan Bishop Ö. Impact of African-Specific ACE2 Polymorphisms on Omicron BA.4/5 RBD Binding and Allosteric Communication Within the ACE2-RBD Protein Complex. Int J Mol Sci 2025; 26:1367. [PMID: 39941135 PMCID: PMC11818624 DOI: 10.3390/ijms26031367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/27/2025] [Accepted: 02/01/2025] [Indexed: 02/16/2025] Open
Abstract
Severe acute respiratory symptom coronavirus 2 (SARS-CoV-2) infection occurs via the attachment of the spike (S) protein's receptor binding domain (RBD) to human ACE2 (hACE2). Natural polymorphisms in hACE2, particularly at the interface, may alter RBD-hACE2 interactions, potentially affecting viral infectivity across populations. This study identified the effects of six naturally occurring hACE2 polymorphisms with high allele frequency in the African population (S19P, K26R, M82I, K341R, N546D and D597Q) on the interaction with the S protein RBD of the BA.4/5 Omicron sub-lineage through post-molecular dynamics (MD), inter-protein interaction and dynamic residue network (DRN) analyses. Inter-protein interaction analysis suggested that the K26R variation, with the highest interactions, aligns with reports of enhanced RBD binding and increased SARS-CoV-2 susceptibility. Conversely, S19P, showing the fewest interactions and largest inter-protein distances, agrees with studies indicating it hinders RBD binding. The hACE2 M82I substitution destabilized RBD-hACE2 interactions, reducing contact frequency from 92 (WT) to 27. The K341R hACE2 variant, located distally, had allosteric effects that increased RBD-hACE2 contacts compared to WThACE2. This polymorphism has been linked to enhanced affinity for Alpha, Beta and Delta lineages. DRN analyses revealed that hACE2 polymorphisms may alter the interaction networks, especially in key residues involved in enzyme activity and RBD binding. Notably, S19P may weaken hACE2-RBD interactions, while M82I showed reduced centrality of zinc and chloride-coordinating residues, hinting at impaired communication pathways. Overall, our findings show that hACE2 polymorphisms affect S BA.4/5 RBD stability and modulate spike RBD-hACE2 interactions, potentially influencing SARS-CoV-2 infectivity-key insights for vaccine and therapeutic development.
Collapse
Affiliation(s)
- Victor Barozi
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda 6139, South Africa;
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda 6139, South Africa;
- National Institute for Theoretical and Computational Sciences (NITheCS), Matieland 7602, South Africa
| |
Collapse
|
7
|
Ji T, Dong X, Wei L, Xue Y, Wang X, Cai K, Zhou H, Wang Z, Xu B, Xu F. Decoding of the saltiness enhancement taste peptides from Jinhua ham and its molecular mechanism of interaction with ENaC/TMC4 receptors. Food Chem 2025; 463:141455. [PMID: 39362094 DOI: 10.1016/j.foodchem.2024.141455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
This study focused on unlocking the potential of Jinhua ham-derived peptides (JHP) for enhancing saltiness. JHP (<3 kDa) was obtained through ultrafiltration and desalting, reducing the salt content by 96 %. Four peptide fractions (JHP-P1/P2/P3/P4) were isolated using Sephadex G-25 gel filtration and anion-exchange chromatography. Sensory evaluation and electronic tongue analysis revealed that JHP-P2 (0.5 mg/mL) exhibited the highest saltiness which could replace four-fold NaCl salinity. Three peptides (DL, FMSALF, and HVRRK) identified by UPLC-QTOF-MS/MS were simulated with salty taste receptors ENaC/TMC4. Results indicated that Ser84 and Phe89 of ENaC and Asn404 and Lys567 of TMC4 are crucial for peptide docking related to salty taste. Molecular dynamics simulations showed that the three peptides bind to the TMC4 and ENaC through van der Waals forces, electrostatic interactions, and hydrogen bonds. These findings establish a robust theoretical foundation for salt reduction strategies and provide novel insights into the potential applications of Jinhua ham.
Collapse
Affiliation(s)
- Tong Ji
- School of Food and Biological Engineering, Key Laboratory of Animal Source of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Xinran Dong
- Mondelez Suzhou Food Co., Ltd, Suzhou 215000, China
| | - Lei Wei
- School of Food and Biological Engineering, Key Laboratory of Animal Source of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Yuanyuan Xue
- School of Food and Biological Engineering, Key Laboratory of Animal Source of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Xuefeng Wang
- College of Food Science and Technology, Yunnan Agriculture University, Kunming 650000, China
| | - Kezhou Cai
- School of Food and Biological Engineering, Key Laboratory of Animal Source of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Hui Zhou
- School of Food and Biological Engineering, Key Laboratory of Animal Source of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Zhaoming Wang
- School of Food and Biological Engineering, Key Laboratory of Animal Source of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Baocai Xu
- School of Food and Biological Engineering, Key Laboratory of Animal Source of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Feiran Xu
- School of Food and Biological Engineering, Key Laboratory of Animal Source of Anhui Province, Hefei University of Technology, Hefei 230601, China; Shandong Delisi Food Co., Ltd, Weifang 262200, China.
| |
Collapse
|
8
|
Islam S, Biswas S, Islam MA, Biswas J, Dutta AK, Mohiuddin GG, Saleh MA, Zaman S. Multifaceted Analysis of Lactobacillus plantarum DMR14 Reveals Promising Antidiabetic Properties Through In Vivo Assays and Molecular Simulations. J Cell Mol Med 2025; 29:e70347. [PMID: 39865621 PMCID: PMC11769970 DOI: 10.1111/jcmm.70347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/02/2024] [Accepted: 12/30/2024] [Indexed: 01/28/2025] Open
Abstract
Due to the growing concern about diabetes worldwide, we investigated the antidiabetic potential of Lactobacillus plantarum DMR14, assessing its effects on the diabetic mice and identifying safe, bioactive compounds targeting DPP4 protein for drug development through various methods, including in vivo assays, GC-MS analysis and molecular docking simulations. The animal experiments showed that after 3 weeks of treatment, the blood sugar levels of mice given the bacteria were reduced by 35.03% compared to baseline. The treatment also significantly lowered blood lipids such as triglycerides, total cholesterol and LDL cholesterol, but did not affect HDL cholesterol levels. Additionally, we identified three compounds that effectively targeted a protein (DPP4) involved in diabetes (PDB ID: 4A5S). These compounds were predicted to be safe for absorption, processing and elimination by the body, and showed no signs of inducing cancer in computer simulations. Further simulations indicated that these compounds bind stably to the protein over time. Diabetic mice treated with Lactobacillus plantarum DMR14 exhibited improved organ health, reduced glucose levels and better metabolic markers. Computer analysis suggested compounds that could enhance enzyme inhibition, indicating potential antidiabetic properties in this strain. These suggested compounds could be considered potential candidates for developing antidiabetic drugs.
Collapse
Affiliation(s)
- Shirmin Islam
- Microbiology Laboratory, Department of Genetic Engineering and BiotechnologyUniversity of RajshahiRajshahiBangladesh
| | - Suvro Biswas
- Microbiology Laboratory, Department of Genetic Engineering and BiotechnologyUniversity of RajshahiRajshahiBangladesh
| | - Md. Ariful Islam
- Microbiology Laboratory, Department of Genetic Engineering and BiotechnologyUniversity of RajshahiRajshahiBangladesh
| | - Jui Biswas
- Microbiology Laboratory, Department of Genetic Engineering and BiotechnologyUniversity of RajshahiRajshahiBangladesh
| | - Amit Kumar Dutta
- Department of MicrobiologyUniversity of RajshahiRajshahiBangladesh
| | - Golam Gaus Mohiuddin
- Department of PharmacyNoakhali Science & Technology UniversitySonapurNoakhaliBangladesh
| | - Md. Abu Saleh
- Microbiology Laboratory, Department of Genetic Engineering and BiotechnologyUniversity of RajshahiRajshahiBangladesh
| | - Shahriar Zaman
- Microbiology Laboratory, Department of Genetic Engineering and BiotechnologyUniversity of RajshahiRajshahiBangladesh
| |
Collapse
|
9
|
Tenginakai P, Bhor S, Waasia FZ, Sharma S, Dinesh S. Comparative proteomic analysis to annotate the structural association of the hypothetical proteins from the conserved domain of P. aeruginosa as novel vaccine candidates. Biotechnol Lett 2024; 47:13. [PMID: 39702823 DOI: 10.1007/s10529-024-03546-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/18/2024] [Accepted: 10/03/2024] [Indexed: 12/21/2024]
Abstract
OBJECTIVES Pseudomonas aeruginosa, identified as an ESKAPE pathogen, contributes to severe clinical diseases worldwide and despite its prevalence an effective vaccine or treatment remains elusive. Numerous computational methods are being employed to target hypothetical proteins (HPs). Presently, no studies have predicted multi-epitope vaccines for these HPs. RESULTS Totally, 877 HPs from P. aeruginosa were included in the study and the data showcased here illustrate a methodical approach to prioritize the proteome by employing diverse comparative proteomics. The study employed physicochemical property assessment and conserved domain analysis to identify stable and immunologically pertinent proteins for epitope prediction. The VaxiJen2.0 antigenicity assessment aided in epitope selection, contributing to the foundational steps in vaccine development by predicting T-cell and B-cell epitopes. Potential T and B cell epitopes with high antigenicity, non-toxic categorization, and robust binding affinities were identified in the investigation. The periplasmic HP WP_132813935.1 was predicted as conserved, stable, and soluble. The T-cell peptide RTSMRALAY and the B-cell peptide MPVYLYLM were predicted to be probable non-allergen and demonstrated strong binding with MHC class I allele HLA-C*03:03. CONCLUSIONS This research provides a comprehensive approach to predict T and B cell epitopes for conditions associated with P. aeruginosa, offering a candidate pool for tailored vaccine development. However, the efficacy of these epitopes in vaccine development necessitates clinical validation and testing for confirmation.
Collapse
Affiliation(s)
- Prajval Tenginakai
- Department of Bioinformatics, BioNome, Bengaluru, Karnataka, 560043, India
| | - Samiksha Bhor
- Department of Bioinformatics, BioNome, Bengaluru, Karnataka, 560043, India
| | | | - Sameer Sharma
- Department of Bioinformatics, BioNome, Bengaluru, Karnataka, 560043, India
| | - Susha Dinesh
- Department of Bioinformatics, BioNome, Bengaluru, Karnataka, 560043, India.
| |
Collapse
|
10
|
Aktaş E, Sezerman OU, Özer M, Kırboğa KK, Köseoğlu AE, Özgentürk NÖ. Identification of potential antigenic proteins and epitopes for the development of a monkeypox virus vaccine: an in silico approach. Mol Divers 2024:10.1007/s11030-024-11033-1. [PMID: 39546220 DOI: 10.1007/s11030-024-11033-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/25/2024] [Indexed: 11/17/2024]
Abstract
Virus assembly, budding, or surface proteins play important roles such as viral attachment to cells, fusion, and entry into cells. The present study aimed to identify potential antigenic proteins and epitopes that could be used to develop a vaccine or diagnostic assay against the Monkeypox virus (MPXV) which may cause a potential epidemic. To do this, 39 MPXV proteins (including assembly, budding, and surface proteins) were analyzed using an in silico approach. Of these 39 proteins, the F5L virus protein was found to be the best vaccine candidate due to its signal peptide properties, negative GRAVY value, low transmembrane helix content, moderate aliphatic index, large molecular weight, long-estimated half-life, beta wrap motifs, and being stable, soluble, and containing non-allergic features. Moreover, the F5L protein exhibited alpha-helical secondary structures, making it a potential "structural antigen" recognized by antibodies. The other viral protein candidates were A9 and A43, but A9 lacked beta wrap motifs, while A43 had a positive GRAVY value and was insoluble. These two proteins were not as suitable candidates as the F5L protein. The KRVNISLTCL epitope from the F5L protein demonstrated the highest antigen score (2.4684) for MHC-I, while the GRFGYVPYVGYKCI epitope from the A9 protein exhibited the highest antigenicity (1.754) for MHC-II. Both epitopes met the criteria for high antigenicity, non-toxicity, solubility, non-allergenicity, and the presence of cleavage sites. Molecular docking and dynamics (MD) simulations further validated their potential, revealing stable and energetically favorable interactions with MHC molecules. The immunogenicity assessment showed that GRFGYVPYVGYKCI could strongly induce immune responses through both IFN-γ and IL-4 pathways, suggesting its capacity to provoke a balanced Th1 and Th2 response. In contrast, KRVNISLTCL exhibited limited immunostimulatory potential. Overall, these findings lay the groundwork for future vaccine development, indicating that F5L, particularly the GRFGYVPYVGYKCI epitope, may serve as an effective candidate for peptide-based vaccine design against MPXV.
Collapse
Affiliation(s)
- Emre Aktaş
- Faculty of Art and Science, Molecular Biology and Genetics, Yıldız Technical University, Istanbul, Turkey.
| | - Osman Uğur Sezerman
- School of Medicine, Department of Basic Sciences, Biostatistics and Medical Informatics, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Murat Özer
- Department of Chemistry, Faculty of Science and Arts, University of Afyon Kocatepe, Afyonkarahisar, Turkey
| | - Kevser Kübra Kırboğa
- Faculty of Engineering, Bioengineering Department, Bilecik Seyh Edebali University, Bilecik, 11100, Turkey
| | - Ahmet Efe Köseoğlu
- Experimental Eye Research Institute, Ruhr-University Bochum, Bochum, Germany
| | - Nehir Özdemir Özgentürk
- Faculty of Art and Science, Molecular Biology and Genetics, Yıldız Technical University, Istanbul, Turkey
| |
Collapse
|
11
|
Yang ZY, Zheng XW, Jiang WH, Chen GZ, Liang QZ, Xu GZ, Yi RH. Selenicereus undatus (Dragon Fruit) Phytochemicals for Managing Three Human Pathogenic Bacteria: An In Vitro and In Silico Approach. Metabolites 2024; 14:577. [PMID: 39590813 PMCID: PMC11596672 DOI: 10.3390/metabo14110577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/08/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024] Open
Abstract
OBJECTIVES Antibiotic-resistant bacterial infections are a growing global concern. A natural remedy for bacterial infections could be available in the Selenicereus undatus fruit, but its antibacterial and biochemical properties are not fully known. METHODS In this study, the biochemical composition and antibacterial, antioxidant, and cytotoxic activities of the Jindu No. 1 (JD) and Bird's Nest (YW) dragon fruit varieties and their potential effects against E. coli, Pseudomonas sp., and Staphylococcus sp. were scrutinized. RESULTS The JD fruit extract showed higher antibacterial activity than the YW variety against E. coli, Pseudomonas sp., and Staphylococcus sp. in vitro. Additionally, the JD variety demonstrated more significant antioxidant activity than the YW variety and showed less cytotoxic activity. The JD variety had a higher glucose content, while the YW variety had a higher fructose content, and the phytoconstituents analysis confirmed 659 metabolites in total from the two varieties. Through in silico analyses, phytoconstituents were evaluated to identify potential drug molecules against the selected bacterial strain. Moreover, the molecular docking study revealed that riboprobe and Z-Gly-Pro might be effective against E. coli, 4-hydroxy retinoic acid, and that succinyl adenosine may target Pseudomonas sp., and xanthosine and 2'-deoxyinosine-5'-monophosphate may be effective against Staphylococcus sp. These results were further validated by 100 ns Molecular Dynamics (MD) simulation, and all of the selected compounds exhibited acceptable ADMET features. CONCLUSIONS Therefore, phytoconstituents from S. undatus fruit varieties could be employed to fight human bacterial diseases, and future studies will support the continuation of other biological activities in medical research.
Collapse
Affiliation(s)
| | | | | | | | | | - Guang-Zhao Xu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Z.-Y.Y.); (X.-W.Z.); (W.-H.J.); (G.-Z.C.); (Q.-Z.L.)
| | - Run-Hua Yi
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Z.-Y.Y.); (X.-W.Z.); (W.-H.J.); (G.-Z.C.); (Q.-Z.L.)
| |
Collapse
|
12
|
Taank Y, Randhawa V, Agnihotri N. Ergosterol and its metabolites as agonists of Liver X receptor and their anticancer potential in colorectal cancer. J Steroid Biochem Mol Biol 2024; 243:106572. [PMID: 38908720 DOI: 10.1016/j.jsbmb.2024.106572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/10/2024] [Accepted: 06/20/2024] [Indexed: 06/24/2024]
Abstract
Aberrant cholesterol homeostasis is a well-recognized hallmark of cancer and is implicated in metastasis as well as chemotherapeutic resistance, the two major causes of cancer associated mortality. Liver X receptors (LXRs) are the key transcription factors that induce cholesterol efflux via enhancing the expression of ABCA1 and ABCG1. Therefore, a comprehensive analysis of several novel sterols namely ergosta-7,22,24(28)-trien-3β-ol (Erg1), ergosta-5,22,25-trien-3-ol (Erg2), ergosta-5,7,22,24(28)-tetraen-3β-ol (Erg3), and ergosta-7,22-dien-3β-ol (Erg4) as LXR agonists has been performed. Molecular docking studies have shown that these sterols possess higher binding affinities for LXRs as compared to the reference ligands (GW3965 and TO901317) and also formed critical activating interactions. Molecular dynamic (MD) simulations further confirmed that docking complexes made of these sterols possess significant stability. To assess the extent of LXR activation, ABCA1 promoter was cloned into luciferase reporter plasmid and transfected into HCT116 cells. It was observed that treatment with Erg, Erg2 and Erg4 led to a significant LXR activation with an EC50 of 5.64 µM, 4.83 and 3.03 µM respectively. Furthermore, a significant increase in mRNA expression of NR1H2 and LXR target genes i.e. ABCA1, ABCG1 and ApoE was observed upon Erg treatment. Flow cytometric analysis have revealed a significant increase in the accumulation of ABCA1 upon Erg treatment. Cytotoxicity studies conducted on colorectal cancer cell and normal epithelial cell line showed that these sterols are selectively toxic towards cancer cells. Taken together, our findings suggests that ergosterol activates LXRs, have significant anticancer activity and could be a likely candidate to manage aberrant cholesterol homeostasis.
Collapse
Affiliation(s)
- Yogain Taank
- Department of Biochemistry (Sector 25), Panjab University, Chandigarh 160014, India
| | - Vinay Randhawa
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Navneet Agnihotri
- Department of Biochemistry (Sector 25), Panjab University, Chandigarh 160014, India.
| |
Collapse
|
13
|
Rahman S, Chiou CC, Ahmad S, Islam ZU, Tanaka T, Alouffi A, Chen CC, Almutairi MM, Ali A. Subtractive Proteomics and Reverse-Vaccinology Approaches for Novel Drug Target Identification and Chimeric Vaccine Development against Bartonella henselae Strain Houston-1. Bioengineering (Basel) 2024; 11:505. [PMID: 38790371 PMCID: PMC11118080 DOI: 10.3390/bioengineering11050505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/03/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Bartonella henselae is a Gram-negative bacterium causing a variety of clinical symptoms, ranging from cat-scratch disease to severe systemic infections, and it is primarily transmitted by infected fleas. Its status as an emerging zoonotic pathogen and its capacity to persist within host erythrocytes and endothelial cells emphasize its clinical significance. Despite progress in understanding its pathogenesis, limited knowledge exists about the virulence factors and regulatory mechanisms specific to the B. henselae strain Houston-1. Exploring these aspects is crucial for targeted therapeutic strategies against this versatile pathogen. Using reverse-vaccinology-based subtractive proteomics, this research aimed to identify the most antigenic proteins for formulating a multi-epitope vaccine against the B. henselae strain Houston-1. One crucial virulent and antigenic protein, the PAS domain-containing sensor histidine kinase protein, was identified. Subsequently, the identification of B-cell and T-cell epitopes for the specified protein was carried out and the evaluated epitopes were checked for their antigenicity, allergenicity, solubility, MHC binding capability, and toxicity. The filtered epitopes were merged using linkers and an adjuvant to create a multi-epitope vaccine construct. The structure was then refined, with 92.3% of amino acids falling within the allowed regions. Docking of the human receptor (TLR4) with the vaccine construct was performed and demonstrated a binding energy of -1047.2 Kcal/mol with more interactions. Molecular dynamic simulations confirmed the stability of this docked complex, emphasizing the conformation and interactions between the molecules. Further experimental validation is necessary to evaluate its effectiveness against B. henselae.
Collapse
Affiliation(s)
- Sudais Rahman
- Department of Zoology, Abdul Wali Khan University, Mardan 23200, Khyber Pakhtunkhwa, Pakistan;
| | - Chien-Chun Chiou
- Department of Dermatology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan;
| | - Shabir Ahmad
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas (UNICAMP), Campinas 13084-862, Brazil;
| | - Zia Ul Islam
- Department of Biotechnology, Abdul Wali Khan University, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
- Ph.D. Program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Mashal M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University, Mardan 23200, Khyber Pakhtunkhwa, Pakistan;
| |
Collapse
|
14
|
Antony P, Baby B, Jobe A, Vijayan R. Computational Modeling of the Interactions between DPP IV and Hemorphins. Int J Mol Sci 2024; 25:3059. [PMID: 38474306 DOI: 10.3390/ijms25053059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Type 2 diabetes is a chronic metabolic disorder characterized by high blood glucose levels due to either insufficient insulin production or ineffective utilization of insulin by the body. The enzyme dipeptidyl peptidase IV (DPP IV) plays a crucial role in degrading incretins that stimulate insulin secretion. Therefore, the inhibition of DPP IV is an established approach for the treatment of diabetes. Hemorphins are a class of short endogenous bioactive peptides produced by the enzymatic degradation of hemoglobin chains. Numerous in vitro and in vivo physiological effects of hemorphins, including DPP IV inhibiting activity, have been documented in different systems and tissues. However, the underlying molecular binding behavior of these peptides with DPP IV remains unknown. Here, computational approaches such as protein-peptide molecular docking and extensive molecular dynamics (MD) simulations were employed to identify the binding pose and stability of peptides in the active site of DPP IV. Findings indicate that hemorphins lacking the hydrophobic residues LVV and VV at the N terminal region strongly bind to the conserved residues in the active site of DPP IV. Furthermore, interactions with these critical residues were sustained throughout the duration of multiple 500 ns MD simulations. Notably, hemorphin 7 showed higher binding affinity and sustained interactions by binding to S1 and S2 pockets of DPP IV.
Collapse
Affiliation(s)
- Priya Antony
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Bincy Baby
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Amie Jobe
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- The Big Data Analytics Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
15
|
Biswas S, Mita MA, Afrose S, Hasan MR, Shimu MSS, Zaman S, Saleh MA. An in silico approach to develop potential therapies against Middle East Respiratory Syndrome Coronavirus (MERS-CoV). Heliyon 2024; 10:e25837. [PMID: 38379969 PMCID: PMC10877303 DOI: 10.1016/j.heliyon.2024.e25837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/22/2024] Open
Abstract
A deadly respiratory disease Middle East Respiratory Syndrome (MERS) is caused by a perilous virus known as MERS-CoV, which has a severe impact on human health. Currently, there is no approved vaccine, prophylaxis, or antiviral therapeutics for preventing MERS-CoV infection. Due to its inexorable and integral role in the maturation and replication of the MERS-CoV virus, the 3C-like protease is unavoidly a viable therapeutic target. In this study, 2369 phytoconstituents were enlisted from Japanese medicinal plants, and these compounds were screened against 3C-like protease to identify feasible inhibitors. The best three compounds were identified as Kihadanin B, Robustaflavone, and 3-beta-O- (trans-p-Coumaroyl) maslinic acid, with binding energies of -9.8, -9.4, and -9.2 kcal/mol, respectively. The top three potential candidates interacted with several active site residues in the targeted protein, including Cys145, Met168, Glu169, Ala171, and Gln192. The best three compounds were assessed by in silico technique to determine their drug-likeness properties, and they exhibited the least harmful features and the greatest drug-like qualities. Various descriptors, such as solvent-accessible surface area, root-mean-square fluctuation, root-mean-square deviation, hydrogen bond, and radius of gyration, validated the stability and firmness of the protein-ligand complexes throughout the 100ns molecular dynamics simulation. Moreover, the top three compounds exhibited better binding energy along with better stability and firmness than the inhibitor (Nafamostat), which was further confirmed by the binding free energy calculation. Therefore, this computational investigation could aid in the development of efficient therapeutics for life-threatening MERS-CoV infections.
Collapse
Affiliation(s)
- Suvro Biswas
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Mohasana Akter Mita
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Shamima Afrose
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md. Robiul Hasan
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | | | - Shahriar Zaman
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md. Abu Saleh
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| |
Collapse
|
16
|
Munna MMR, Islam MA, Shanta SS, Monty MA. Structural, functional, molecular docking analysis of a hypothetical protein from Talaromyces marneffei and its molecular dynamic simulation: an in-silico approach. J Biomol Struct Dyn 2024:1-20. [PMID: 38345137 DOI: 10.1080/07391102.2024.2314264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/29/2024] [Indexed: 03/01/2024]
Abstract
Talaromyces marneffei (formerly Penicillium marneffei) is an endemic pathogenic fungus in Southern China and Southeast Asia. It can cause disease in patients with travel-related exposure to this organism and high morbidity and mortality in acquired immune deficiency syndrome (AIDS). In this study, we analyzed the structure and function of a hypothetical protein from T. marneffei using several bioinformatics tools and servers to unveil novel pharmacological targets and design a peptide vaccine against specific epitopes. A total of seven functional epitopes were screened on the protein, and 'STGVDMWSV' was the most antigenic, non-allergenic and non-toxic. Molecular docking showed stronger affinity between the CTL epitope 'STGVDMWSV' and the MHC I allele HLA-A*02:01, a higher docking score -234.98 kcal/mol, revealed stable interactions during a 100 ns molecular dynamic simulation. Overall, the results of this study revealed that this hypothetical protein is crucial for comprehending biochemical, physiological pathways and identifying novel therapeutic targets for human health.
Collapse
Affiliation(s)
- Md Masudur Rahman Munna
- Department of Biotechnology and Genetic Engineering, Gopalganj Science and Technology University, Gopalganj-8100, Bangladesh
| | - Md Ariful Islam
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PRChina
| | - Saima Sajnin Shanta
- Department of Biochemistry and Molecular Biology, Gopalganj Science and Technology University, Gopalganj-8100, Bangladesh
| | - Masuma Akter Monty
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, PR China
| |
Collapse
|
17
|
Vassiliev P, Gusev E, Komelkova M, Kochetkov A, Dobrynina M, Sarapultsev A. Computational Analysis of CD46 Protein Interaction with SARS-CoV-2 Structural Proteins: Elucidating a Putative Viral Entry Mechanism into Human Cells. Viruses 2023; 15:2297. [PMID: 38140538 PMCID: PMC10747966 DOI: 10.3390/v15122297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
This study examines an unexplored aspect of SARS-CoV-2 entry into host cells, which is widely understood to occur via the viral spike (S) protein's interaction with human ACE2-associated proteins. While vaccines and inhibitors targeting this mechanism are in use, they may not offer complete protection against reinfection. Hence, we investigate putative receptors and their cofactors. Specifically, we propose CD46, a human membrane cofactor protein, as a potential putative receptor and explore its role in cellular invasion, acting possibly as a cofactor with other viral structural proteins. Employing computational techniques, we created full-size 3D models of human CD46 and four key SARS-CoV-2 structural proteins-EP, MP, NP, and SP. We further developed 3D models of CD46 complexes interacting with these proteins. The primary aim is to pinpoint the likely interaction domains between CD46 and these structural proteins to facilitate the identification of molecules that can block these interactions, thus offering a foundation for novel pharmacological treatments for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Pavel Vassiliev
- Laboratory for Information Technology in Pharmacology and Computer Modeling of Drugs, Research Center for Innovative Medicines, Volgograd State Medical University, 39 Novorossiyskaya Street, Volgograd 400087, Russia;
| | - Evgenii Gusev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 106 Pervomaiskaya Street, Yekaterinburg 620049, Russia; (E.G.); (M.D.)
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 76 Lenin Prospekt, Chelyabinsk 454080, Russia;
| | - Maria Komelkova
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 76 Lenin Prospekt, Chelyabinsk 454080, Russia;
| | - Andrey Kochetkov
- Laboratory for Information Technology in Pharmacology and Computer Modeling of Drugs, Research Center for Innovative Medicines, Volgograd State Medical University, 39 Novorossiyskaya Street, Volgograd 400087, Russia;
| | - Maria Dobrynina
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 106 Pervomaiskaya Street, Yekaterinburg 620049, Russia; (E.G.); (M.D.)
| | - Alexey Sarapultsev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 106 Pervomaiskaya Street, Yekaterinburg 620049, Russia; (E.G.); (M.D.)
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 76 Lenin Prospekt, Chelyabinsk 454080, Russia;
| |
Collapse
|
18
|
Jabin T, Biswas S, Islam S, Sarker S, Afroze M, Paul GK, Razu MH, Monirruzzaman M, Huda M, Rahman M, Kundu NK, Kamal S, Karmakar P, Islam MA, Saleh MA, Khan M, Zaman S. Effects of gamma-radiation on microbial, nutritional, and functional properties of Katimon mango peels: A combined biochemical and in silico studies. Heliyon 2023; 9:e21556. [PMID: 38027912 PMCID: PMC10665690 DOI: 10.1016/j.heliyon.2023.e21556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Gamma radiation has notable impacts on the flesh of mangoes. In this research, Katimon mangoes were subjected to different levels of irradiation (0.5, 1.0, 1.5, and 2.0 kGy) using a60Co irradiator. The results showed that irradiation significantly reduced the microbial population in the mango peels, with the 1.5 kGy dose showing the most significant reduction. Irradiation also delayed ripening and extended the shelf life of the mango peels. The total fat, protein, ash, moisture, and sugar content of the mango peels were all affected by irradiation. The total protein content, ash content and moisture content increased after irradiation, while the fat content remained relatively unchanged. The sugar content increased in all samples after storage, but the non-irradiated samples had higher sugar levels than the irradiated ones. The dietary fiber content of the mango peels was not significantly affected by irradiation. The vitamin C content decreased in all samples after storage. The titratable acidity and total soluble solids content of the mango peels increased after storage, but there were no significant differences between the irradiated and non-irradiated samples. Antioxidant activity and cytotoxicity assessment highlighted the antioxidant potential and reduced toxicity of irradiated samples. Additionally, the antimicrobial effectiveness of irradiated mango peels was evaluated. The most substantial inhibitory zones (measuring 16.90 ± 0.35) against Pseudomonas sp. were observed at a radiation dose of 1.5 kGy with 150 μg/disc. To identify potential antimicrobial agents, the volatile components of mangoes irradiated with 1.5 kGy were analyzed through GC-MS. Subsequently, these compounds were subjected to in silico studies against a viable protein, TgpA, of Pseudomonas sp. (PDB ID: 6G49). Based on molecular dynamic simulations and ADMET properties, (-)-Carvone (-6.2), p-Cymene (-6.1), and Acetic acid phenylmethyl ester (-6.1) were identified as promising compounds for controlling Pseudomonas sp.
Collapse
Affiliation(s)
- Tabassum Jabin
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Bangladesh
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Dhaka, Bangladesh
| | - Suvro Biswas
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Bangladesh
| | - Shirmin Islam
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Bangladesh
| | - Swagotom Sarker
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Dhaka, Bangladesh
| | - Mirola Afroze
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Dhaka, Bangladesh
| | - Gobindo Kumar Paul
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Bangladesh
| | - Mamudul Hasan Razu
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Dhaka, Bangladesh
| | - Md Monirruzzaman
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Dhaka, Bangladesh
| | - Mainul Huda
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Dhaka, Bangladesh
| | - Mashiur Rahman
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Dhaka, Bangladesh
| | - Nayan Kumer Kundu
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Dhaka, Bangladesh
| | - Sabiha Kamal
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Dhaka, Bangladesh
| | - Pranab Karmakar
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Dhaka, Bangladesh
| | - Md Ariful Islam
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Bangladesh
| | - Md Abu Saleh
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Bangladesh
| | - Mala Khan
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Dhaka, Bangladesh
| | - Shahriar Zaman
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Bangladesh
| |
Collapse
|
19
|
Jahangirian E, Zargan J, Rabbani H, Zamani J. Investigating the inhibitory and penetrating properties of three novel anticancer and antimicrobial scorpion peptides via molecular docking and molecular dynamic simulation. J Biomol Struct Dyn 2023; 41:15354-15385. [PMID: 36927377 DOI: 10.1080/07391102.2023.2188956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
The two types of bladder cancer, muscle invasive and non-muscle invasive (NMIBC), are among the most prevalent cancers worldwide. Despite this, even though muscle-invasive bladder cancer is more deadly, NMIBC requires more therapy due to a greater recurrence rate and more extended and expensive care. Immunotherapy, intravesical chemotherapy, cystoscopy, and transurethral resection (TUR) are among the treatments available. Crude scorpion venomand purified proteins and peptides, can suppress cancer metastasis in an in vitro or in vivo context, suppress cancer growth, halt the cell cycle, and cause cell apoptosis, according to an increasing number of experimental and preclinical studies. In this research, three novels discovered peptides (P2, P3 and P4. ProteomeXchange: PXD036231) from Buthotus saulcyi and, Odontobuthus doriae scorpions were used along with a peptide called pantinin (as a control). The phylogenetic tree showed that the peptides belong to Chaperonin HSP60, Chrysophsin2 and Pheromone-binding protein2, respectively. These peptides were docked with four known antigens, BAGE, BLCAP, PRAME and ROR1 related to bladder cancer and three bacterial antigens FliC, FliD and FimH to investigate their antimicrobial and anticancer properties. The results showed that peptides 2 and 3 have the best binding rate. The MD simulation results also confirmed the binding of peptides 2 and 3 to antigens. The penetration power of peptides 2 and 3 in the membrane of cancer cells and bacterial cells was also simulated, and the results of RMSD and PD confirmed it. QSAR suggests that peptides 2 and 3 can act as anti-cancer and anti-microbial peptides.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ehsan Jahangirian
- Department of Biology, Faculty of Basic Science, Imam Hossein University, Tehran, Iran
| | - Jamil Zargan
- Department of Biology, Faculty of Basic Science, Imam Hossein University, Tehran, Iran
| | - Hodjattallah Rabbani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Javad Zamani
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
20
|
Biswas S, Mita MA, Afrose S, Hasan MR, Islam MT, Rahman MA, Ara MJ, Chowdhury MBA, Meem HN, Mamunuzzaman M, Ahammad T, Ashik IU, Ibrahim MM, Imam MT, Hossain MA, Saleh MA. Integrated Computational Approaches for Inhibiting Sex Hormone-Binding Globulin in Male Infertility by Screening Potent Phytochemicals. Life (Basel) 2023; 13:476. [PMID: 36836833 PMCID: PMC9966787 DOI: 10.3390/life13020476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/01/2023] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
Male infertility is significantly influenced by the plasma-protein sex hormone-binding globulin (SHBG). Male infertility, erectile dysfunction, prostate cancer, and several other male reproductive system diseases are all caused by reduced testosterone bioavailability due to its binding to SHBG. In this study, we have identified 345 phytochemicals from 200 literature reviews that potentially inhibit severe acute respiratory syndrome coronavirus 2. Only a few studies have been done using the SARS-CoV-2 inhibitors to identify the SHBG inhibitor, which is thought to be the main protein responsible for male infertility. In virtual-screening and molecular-docking experiments, cryptomisrine, dorsilurin E, and isoiguesterin were identified as potential SHBG inhibitors with binding affinities of -9.2, -9.0, and -8.8 kcal/mol, respectively. They were also found to have higher binding affinities than the control drug anastrozole (-7.0 kcal/mol). In addition to favorable pharmacological properties, these top three phytochemicals showed no adverse effects in pharmacokinetic evaluations. Several molecular dynamics simulation profiles' root-mean-square deviation, radius of gyration, root-mean-square fluctuation, hydrogen bonds, and solvent-accessible surface area supported the top three protein-ligand complexes' better firmness and stability than the control drug throughout the 100 ns simulation period. These combinatorial drug-design approaches indicate that these three phytochemicals could be developed as potential drugs to treat male infertility.
Collapse
Affiliation(s)
- Suvro Biswas
- Miocrobiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Mohasana Akter Mita
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Shamima Afrose
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md. Robiul Hasan
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md. Tarikul Islam
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md. Ashiqur Rahman
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Mst. Jasmin Ara
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | | | - Habibatun Naher Meem
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md. Mamunuzzaman
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Tanvir Ahammad
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Istiaq Uddin Ashik
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Munjed M. Ibrahim
- Department of Pharmaceutical Chemistry, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Mohammad Tarique Imam
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Al Kharj, Pin 11942, Saudi Arabia
| | - Mohammad Akbar Hossain
- Department of Pharmacology and Toxicology, Faculty of Medicine in Al-Qunfudah, Umm Al-Qura University, Makkah 28814, Saudi Arabia
| | - Md. Abu Saleh
- Miocrobiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| |
Collapse
|
21
|
Islam S, Mahmud ML, Almalki WH, Biswas S, Islam MA, Mortuza MG, Hossain MA, Ekram MAE, Uddin MS, Zaman S, Saleh MA. Cell-Free Supernatants (CFSs) from the Culture of Bacillus subtilis Inhibit Pseudomonas sp. Biofilm Formation. Microorganisms 2022; 10:2105. [PMID: 36363697 PMCID: PMC9692604 DOI: 10.3390/microorganisms10112105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/12/2022] [Accepted: 10/16/2022] [Indexed: 05/29/2024] Open
Abstract
Biofilm inhibition has been identified as a novel drug target for the development of broad-spectrum antibiotics to combat infections caused by drug-resistant bacteria. Although several plant-based compounds have been reported to have anti-biofilm properties, research on the anti-biofilm properties of bacterial bioactive compounds has been sparse. In this study, the efficacy of compounds from a cell-free supernatant of Bacillus subtilis against a biofilm formation of Pseudomonas sp. was studied through in vitro, in vivo and in silico studies. Here, in well diffusion method, Bacillus subtilis demonstrated antibacterial activity, and more than 50% biofilm inhibition activity against Pseudomonas sp. was exhibited through in vitro studies. Moreover, molecular docking and molecular dynamics (MD) simulation gave insights into the possible mode of action of the bacterial volatile compounds identified through GC-MS to inhibit the biofilm-formation protein (PDB ID: 7M1M) of Pseudomonas sp. The binding energy revealed from docking studies ranged from -2.3 to -7.0 kcal mol-1. Moreover, 1-(9H-Fluoren-2-yl)-2-(1-phenyl-1H-ttetrazole5-ylsulfanyl)-ethanone was found to be the best-docked compound through ADMET and pharmacokinetic properties. Furthermore, MD simulations further supported the in vitro studies and formed a stable complex with the tested protein. Thus, this study gives an insight into the development of new antibiotics to combat multi-drug-resistant bacteria.
Collapse
Affiliation(s)
- Shirmin Islam
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md. Liton Mahmud
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Waleed H. Almalki
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Suvro Biswas
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md. Ariful Islam
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md. Golam Mortuza
- Department of Science and Humanities, Bangladesh Army International University of Science and Technology, Cumilla 3500, Bangladesh
| | - Mohammad Akbar Hossain
- Department of Pharmacology and Toxicology, Faculty of Medicine in Al-Qunfudah, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Md. Akhtar-E Ekram
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md. Salah Uddin
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Shahriar Zaman
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md. Abu Saleh
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| |
Collapse
|
22
|
Islam S, Pramanik MJ, Biswas S, Moniruzzaman M, Biswas J, Akhtar-E-Ekram M, Zaman S, Uddin MS, Saleh MA, Hassan S. Biological Efficacy of Compounds from Stingless Honey and Sting Honey against Two Pathogenic Bacteria: An In Vitro and In Silico Study. Molecules 2022; 27:6536. [PMID: 36235073 PMCID: PMC9570921 DOI: 10.3390/molecules27196536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Honey inhibits bacterial growth due to the high sugar concentration, hydrogen peroxide generation, and proteinaceous compounds present in it. In this study, the antibacterial activity of stingless and sting honey against foodborne pathogenic bacteria isolated from spoiled milk samples was examined. The isolated bacterial strains were confirmed as Bacillus cereus and Listeriamonocytogenes through morphological, biochemical, and 16 s RNA analysis. Physiochemical characterizations of the honey samples revealed that both of the honey samples had an acidic pH, low water content, moderate reducing sugar content, and higher proline content. Through the disc diffusion method, the antibacterial activities of the samples were assayed and better results were observed for the 50 mg/disc honey. Both stingless and sting honey showed the most positive efficacy against Bacillus cereus. Therefore, an in silico study was conducted against this bacterium with some common compounds of honey. From several retrieved constituents of stingless and sting honey, 2,4-dihydroxy-2,5-dimethyl 3(2H)-furan-3-one (furan) and 4H-pyran-4-one,2,3-dihydro of both samples and beta.-D-glucopyranose from the stingless revealed high ligand-protein binding efficiencies for the target protein (6d5z, hemolysin II). The root-mean-square deviation, solvent-accessible surface area, the radius of gyration, root-mean-square fluctuations, and hydrogen bonds were used to ensure the binding stability of the docked complexes in the atomistic simulation and confirmed their stability. The combined effort of wet and dry lab-based work support, to some extent, that the antimicrobial properties of honey have great potential for application in medicine as well as in the food industries.
Collapse
Affiliation(s)
- Shirmin Islam
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Mohammad Joy Pramanik
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Suvro Biswas
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Mohammad Moniruzzaman
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Jui Biswas
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Mohammad Akhtar-E-Ekram
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Shahriar Zaman
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Mohammad Salah Uddin
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Mohammad Abu Saleh
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Sabry Hassan
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
23
|
Mahmud S, Afrose S, Biswas S, Nagata A, Paul GK, Mita MA, Hasan MR, Shimu MSS, Zaman S, Uddin MS, Islam MS, Saleh MA. Plant-derived compounds effectively inhibit the main protease of SARS-CoV-2: An in silico approach. PLoS One 2022; 17:e0273341. [PMID: 35998194 PMCID: PMC9398018 DOI: 10.1371/journal.pone.0273341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/06/2022] [Indexed: 11/23/2022] Open
Abstract
The current coronavirus disease 2019 (COVID-19) pandemic, caused by the coronavirus 2 (SARS-CoV-2), involves severe acute respiratory syndrome and poses unprecedented challenges to global health. Structure-based drug design techniques have been developed targeting the main protease of the SARS-CoV-2, responsible for viral replication and transcription, to rapidly identify effective inhibitors and therapeutic targets. Herein, we constructed a phytochemical dataset of 1154 compounds using deep literature mining and explored their potential to bind with and inhibit the main protease of SARS-CoV-2. The three most effective phytochemicals Cosmosiine, Pelargonidin-3-O-glucoside, and Cleomiscosin A had binding energies of -8.4, -8.4, and -8.2 kcal/mol, respectively, in the docking analysis. These molecules could bind to Gln189, Glu166, Cys145, His41, and Met165 residues on the active site of the targeted protein, leading to specific inhibition. The pharmacological characteristics and toxicity of these compounds, examined using absorption, distribution, metabolism, excretion, and toxicity (ADMET) analyses, revealed no carcinogenicity or toxicity. Furthermore, the complexes were simulated with molecular dynamics for 100 ns to calculate the root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), solvent-accessible surface area (SASA), and hydrogen profiles from the simulation trajectories. Our analysis validated the rigidity of the docked protein-ligand. Taken together, our computational study findings might help develop potential drugs to combat the main protease of the SARS-CoV-2 and help alleviate the severity of the pandemic.
Collapse
Affiliation(s)
- Shafi Mahmud
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Shamima Afrose
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Suvro Biswas
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Abir Nagata
- Department of Regenerative Dermatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Gobindo Kumar Paul
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Mohasana Akter Mita
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Robiul Hasan
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | | | - Shahriar Zaman
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Salah Uddin
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Md Sayeedul Islam
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Md. Abu Saleh
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| |
Collapse
|
24
|
Barozi V, Edkins AL, Tastan Bishop Ö. Evolutionary progression of collective mutations in Omicron sub-lineages towards efficient RBD-hACE2: Allosteric communications between and within viral and human proteins. Comput Struct Biotechnol J 2022; 20:4562-4578. [PMID: 35989699 PMCID: PMC9384468 DOI: 10.1016/j.csbj.2022.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/06/2022] [Accepted: 08/07/2022] [Indexed: 11/23/2022] Open
Abstract
The interaction between the Spike (S) protein of SARS-CoV-2 and the human angiotensin converting enzyme 2 (hACE2) is essential for infection, and is a target for neutralizing antibodies. Consequently, selection of mutations in the S protein is expected to be driven by the impact on the interaction with hACE2 and antibody escape. Here, for the first time, we systematically characterized the collective effects of mutations in each of the Omicron sub-lineages (BA.1, BA.2, BA.3 and BA.4) on both the viral S protein receptor binding domain (RBD) and the hACE2 protein using post molecular dynamics studies and dynamic residue network (DRN) analysis. Our analysis suggested that Omicron sub-lineage mutations result in altered physicochemical properties that change conformational flexibility compared to the reference structure, and may contribute to antibody escape. We also observed changes in the hACE2 substrate binding groove in some sub-lineages. Notably, we identified unique allosteric communication paths in the reference protein complex formed by the DRN metrics betweenness centrality and eigencentrality hubs, originating from the RBD core traversing the receptor binding motif of the S protein and the N-terminal domain of the hACE2 to the active site. We showed allosteric changes in residue network paths in both the RBD and hACE2 proteins due to Omicron sub-lineage mutations. Taken together, these data suggest progressive evolution of the Omicron S protein RBD in sub-lineages towards a more efficient interaction with the hACE2 receptor which may account for the increased transmissibility of Omicron variants.
Collapse
Affiliation(s)
- Victor Barozi
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown 6139, South Africa
| | - Adrienne L. Edkins
- The Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown 6139, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown 6139, South Africa
| |
Collapse
|
25
|
Sansone C, Pistelli L, Del Mondo A, Calabrone L, Fontana A, Noonan DM, Albini A, Brunet C. The Microalgal Diatoxanthin Inflects the Cytokine Storm in SARS-CoV-2 Stimulated ACE2 Overexpressing Lung Cells. Antioxidants (Basel) 2022; 11:antiox11081515. [PMID: 36009234 PMCID: PMC9405469 DOI: 10.3390/antiox11081515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 12/10/2022] Open
Abstract
Contact between SARS-CoV-2 and human lung cells involves the viral spike protein and the human angiotensin-converting enzyme 2 (ACE2) receptor on epithelial cells, the latter being strongly involved in the regulation of inflammation as well as blood pressure homeostasis. SARS-CoV-2 infection is characterized by a strong inflammatory response defined as a “cytokine storm”. Among recent therapeutic approaches against SARS-CoV-2 targeting the dramatic inflammatory reaction, some natural products are promising. Diatoms are microalgae able to produce bioactive secondary metabolites, such as the xanthophyll diatoxanthin (Dt). The aim of this study is to demonstrate the anti-inflammatory effects of Dt on the A549-hACE2 lung cell line, exploring its interaction with the ACE2 receptor, as well as depicting its role in inhibiting a cytokine storm induced by the SARS-CoV-2 spike glycoprotein. Results showed that Dt enhanced the cell metabolism, e.g., the percent of metabolically active cells, as well as the ACE2 enzymatic activity. Moreover, Dt strongly affected the response of the SARS-CoV-2 spike glycoprotein-exposed A549-hACE2 cells in decreasing the interleukin-6 production and increasing the interleukin-10 release. Moreover, Dt upregulated genes encoding for the interferon pathway related to antiviral defense and enhanced proteins belonging to the innate immunity response. The potential interest of Dt as a new therapeutic agent in the treatment and/or prevention of the severe inflammatory syndrome related to SARS-CoV-2 infection is postulated.
Collapse
Affiliation(s)
- Clementina Sansone
- Stazione Zoologica Anton Dohrn, sede Molosiglio Marina Acton, Via Ammiraglio F. Acton 55, 80133 Napoli, Italy; (L.P.); (A.D.M.); (L.C.)
- Institute of Biomolecular Chemistry, CNR, Via Campi Flegrei 34, Pozzuoli, 80078 Napoli, Italy;
- Correspondence: (C.S.); (C.B.); Tel.: +39-0815833262 (C.S. & C.B.)
| | - Luigi Pistelli
- Stazione Zoologica Anton Dohrn, sede Molosiglio Marina Acton, Via Ammiraglio F. Acton 55, 80133 Napoli, Italy; (L.P.); (A.D.M.); (L.C.)
| | - Angelo Del Mondo
- Stazione Zoologica Anton Dohrn, sede Molosiglio Marina Acton, Via Ammiraglio F. Acton 55, 80133 Napoli, Italy; (L.P.); (A.D.M.); (L.C.)
| | - Luana Calabrone
- Stazione Zoologica Anton Dohrn, sede Molosiglio Marina Acton, Via Ammiraglio F. Acton 55, 80133 Napoli, Italy; (L.P.); (A.D.M.); (L.C.)
- Unit of Molecular Pathology, Biochemistry and Immunology, IRCCS MultiMedica, 20138 Milan, Italy;
| | - Angelo Fontana
- Institute of Biomolecular Chemistry, CNR, Via Campi Flegrei 34, Pozzuoli, 80078 Napoli, Italy;
- Department of Biology, University of Naples “Federico II”, Via Cupa Nuova Cinthia 21, 80126 Napoli, Italy
| | - Douglas M. Noonan
- Unit of Molecular Pathology, Biochemistry and Immunology, IRCCS MultiMedica, 20138 Milan, Italy;
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Adriana Albini
- IRCCS European Institute of Oncology, IEO, 20141 Milan, Italy;
| | - Christophe Brunet
- Stazione Zoologica Anton Dohrn, sede Molosiglio Marina Acton, Via Ammiraglio F. Acton 55, 80133 Napoli, Italy; (L.P.); (A.D.M.); (L.C.)
- Correspondence: (C.S.); (C.B.); Tel.: +39-0815833262 (C.S. & C.B.)
| |
Collapse
|
26
|
Antonopoulou I, Sapountzaki E, Rova U, Christakopoulos P. The Inhibitory Potential of Ferulic Acid Derivatives against the SARS-CoV-2 Main Protease: Molecular Docking, Molecular Dynamics, and ADMET Evaluation. Biomedicines 2022; 10:biomedicines10081787. [PMID: 35892687 PMCID: PMC9329733 DOI: 10.3390/biomedicines10081787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
The main protease (Mpro) of SARS-CoV-2 is an appealing target for the development of antiviral compounds, due to its critical role in the viral life cycle and its high conservation among different coronaviruses and the continuously emerging mutants of SARS-CoV-2. Ferulic acid (FA) is a phytochemical with several health benefits that is abundant in plant biomass and has been used as a basis for the enzymatic or chemical synthesis of derivatives with improved properties, including antiviral activity against a range of viruses. This study tested 54 reported FA derivatives for their inhibitory potential against Mpro by in silico simulations. Molecular docking was performed using Autodock Vina, resulting in comparable or better binding affinities for 14 compounds compared to the known inhibitors N3 and GC376. ADMET analysis showed limited bioavailability but significantly improved the solubility for the enzymatically synthesized hits while better bioavailability and druglikeness properties but higher toxicity were observed for the chemically synthesized ones. MD simulations confirmed the stability of the complexes of the most promising compounds with Mpro, highlighting FA rutinoside and compound e27 as the best candidates from each derivative category.
Collapse
|