1
|
Matsuo T, Bélime A, Natali F, De Francesco A, Peters J. Sub-nanosecond dynamics of phospholipid membranes interacting with polymorphic amyloid fibrils observed by elastic incoherent neutron scattering. Phys Chem Chem Phys 2025; 27:6278-6287. [PMID: 40062432 DOI: 10.1039/d4cp04869e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Amyloidosis such as Alzheimer's or Parkinson's disease is characterized by deposition of amyloid fibrils in the brain or various internal organs. The onset of amyloidosis is related to the strength of cytotoxicity caused by toxic amyloid species. In addition, amyloid fibrils show a polymorphism, i.e., some types of fibrils are more cytotoxic than others. It is thus important to elucidate the molecular mechanism of cytotoxicity, which is ultimately caused by interactions between amyloid fibrils and cell membranes. In this study, modulation of molecular dynamics of phospholipid membranes induced by the binding of amyloid polymorphic fibrils with different levels of cytotoxicity was studied by elastic incoherent neutron scattering in a temperature range between 280 K and 310 K. The amyloid fibrils were formed by a model system of hen egg white lysozyme at pH 2.7 or 6.0 and phospholipid vesicles were formed by DMPG or DMPC. The elastic incoherent neutron scattering curves were analyzed in terms of the mean square positional fluctuations (MSPF) of atomic motions, including its distribution, as a function of temperature, which is related to molecular flexibility. The major findings are: (1) Both more and less cytotoxic fibrils decreased the molecular flexibility of DMPG. (2) While less cytotoxic fibrils decreased the molecular flexibility of DMPC, more cytotoxic fibrils increased it. (3) Close to the physiological body temperature, more cytotoxic fibrils caused larger MSPFs of both phospholipids with an enhanced motional heterogeneity. These results imply that enhanced dynamics of phospholipids is associated with the stronger cytotoxicity.
Collapse
Affiliation(s)
- Tatsuhito Matsuo
- Department of Medical Radiology, Faculty of Health and Medical Sciences, Hiroshima International University, Hiroshima, Japan.
| | - Agathe Bélime
- Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble Cedex 9, France.
- Univ. Grenoble Alpes, CNRS, LiPhy, 38000 Grenoble, France
| | - Francesca Natali
- Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble Cedex 9, France.
- CNR-IOM & INSIDE@ILL c/o Operative Group in Grenoble (OGG), F-38042 Grenoble, France
| | - Alessio De Francesco
- Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble Cedex 9, France.
- CNR-IOM & INSIDE@ILL c/o Operative Group in Grenoble (OGG), F-38042 Grenoble, France
| | - Judith Peters
- Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble Cedex 9, France.
- Univ. Grenoble Alpes, CNRS, LiPhy, 38000 Grenoble, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
2
|
Matsuo T, Yamamoto S, Matsuo K. Phospholipid-induced secondary structural changes of lysozyme polymorphic amyloid fibrils studied using vacuum-ultraviolet circular dichroism. Phys Chem Chem Phys 2024; 26:18943-18952. [PMID: 38952218 DOI: 10.1039/d4cp00965g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The hallmark of amyloidosis, such as Alzheimer's disease and Parkinson's disease, is the deposition of amyloid fibrils in various internal organs. The onset of the disease is related to the strength of cytotoxicity caused by toxic amyloid species. Furthermore, amyloid fibrils show polymorphism, where some types of fibrils are cytotoxic while others are not. It is thus essential to understand the molecular mechanism of cytotoxicity, part of which is caused by the interaction between amyloid polymorphic fibrils and cell membranes. Here, using amyloid polymorphs of hen egg white lysozyme, which is associated with hereditary systemic amyloidosis, showing different levels of cytotoxicity and liposomes of DMPC and DMPG, changes in the secondary structure of the polymorphs and the structural state of phospholipid membranes caused by the interaction were investigated using vacuum-ultraviolet circular dichroism (VUVCD) and Laurdan fluorescence measurements, respectively. Analysis has shown that the more cytotoxic polymorph increases the antiparallel β-sheet content and causes more disorder in the membrane structure while the other less cytotoxic polymorph shows the opposite structural changes and causes less structural disorder in the membrane. These results suggest a close correlation between the structural properties of amyloid fibrils and the degree of structural disorder of phospholipid membranes, both of which are involved in the fundamental process leading to amyloid cytotoxicity.
Collapse
Affiliation(s)
- Tatsuhito Matsuo
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba, 263-8555, Japan.
| | - Seigi Yamamoto
- Laboratory of Evolutionary Oncology, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Koichi Matsuo
- Hiroshima Synchrotron Radiation Center, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
3
|
Saremi S, Khajeh K. Amyloid fibril cytotoxicity and associated disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:265-290. [PMID: 38811083 DOI: 10.1016/bs.pmbts.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Misfolded proteins assemble into fibril structures that are called amyloids. Unlike usually folded proteins, misfolded fibrils are insoluble and deposit extracellularly or intracellularly. Misfolded proteins interrupt the function and structure of cells and cause amyloid disease. There is increasing evidence that the most pernicious species are oligomers. Misfolded proteins disrupt cell function and cause cytotoxicity by calcium imbalance, mitochondrial dysfunction, and intracellular reactive oxygen species. Despite profound impacts on health, social, and economic factors, amyloid diseases remain untreatable. To develop new therapeutics and to understand the pathological manifestations of amyloidosis, research into the origin and pathology of amyloidosis is urgently needed. This chapter describes the basic concept of amyloid disease and the function of atypical amyloid deposits in them.
Collapse
Affiliation(s)
- Sabereh Saremi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
4
|
Dey P, Biswas P. Relaxation dynamics measure the aggregation propensity of amyloid-β and its mutants. J Chem Phys 2023; 158:105101. [PMID: 36922119 DOI: 10.1063/5.0138189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Atomistic molecular dynamics simulations are employed to investigate the global and segmental relaxation dynamics of the amyloid-β protein and its causative and protective mutants. Amyloid-β exhibits significant global/local dynamics that span a broad range of length and time scales due to its intrinsically disordered nature. The relaxation dynamics of the amyloid-β protein and its mutants is quantitatively correlated with its experimentally measured aggregation propensity. The protective mutant has slower relaxation dynamics, whereas the causative mutants exhibit faster global dynamics compared with that of the wild-type amyloid-β. The local dynamics of the amyloid-β protein or its mutants is governed by a complex interplay of the charge, hydrophobicity, and change in the molecular mass of the mutated residue.
Collapse
Affiliation(s)
- Priya Dey
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Parbati Biswas
- Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
5
|
Yamamoto N, Inoue R, Kurisaki I, Matsuo T, Hishikawa Y, Zhao W, Sekiguchi H. Protein large-scale motions revealed by quantum beams: A new era in understanding protein dynamics. Biophys Physicobiol 2022; 19:e190035. [PMID: 36349326 PMCID: PMC9592564 DOI: 10.2142/biophysico.bppb-v19.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/06/2022] [Indexed: 12/01/2022] Open
Affiliation(s)
- Naoki Yamamoto
- School of Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Rintaro Inoue
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Osaka 590-0494, Japan
| | - Ikuo Kurisaki
- Graduate School of System Informatics, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Tatsuhito Matsuo
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Tokai, Ibaraki 319-1106 Japan
| | - Yuki Hishikawa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| | - Wenyang Zhao
- Center for Computational Science, RIKEN, Kobe, Hyogo 650-0047, Japan
| | - Hiroshi Sekiguchi
- Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198, Japan
| |
Collapse
|
6
|
Matsuo T, Peters J. Sub-Nanosecond Dynamics of Pathologically Relevant Bio-Macromolecules Observed by Incoherent Neutron Scattering. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081259. [PMID: 36013438 PMCID: PMC9410404 DOI: 10.3390/life12081259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 01/22/2023]
Abstract
Incoherent neutron scattering (iNS) is one of the most powerful techniques to study the dynamical behavior of bio-macromolecules such as proteins and lipid molecules or whole cells. This technique has widely been used to elucidate the fundamental aspects of molecular motions that manifest in the bio-macromolecules in relation to their intrinsic molecular properties and biological functions. Furthermore, in the last decade, iNS studies focusing on a possible relationship between molecular dynamics and biological malfunctions, i.e., human diseases and disorders, have gained importance. In this review, we summarize recent iNS studies on pathologically relevant proteins and lipids and discuss how the findings are of importance to elucidate the molecular mechanisms of human diseases and disorders that each study targets. Since some diseases such as amyloidosis have become more relevant in the aging society, research in this field will continue to develop further and be more important in the current increasing trend for longevity worldwide.
Collapse
Affiliation(s)
- Tatsuhito Matsuo
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 2-4 Shirakata, Tokai 319-1106, Ibaraki, Japan
- Dept. of Physics, Univ. Grenoble Alpes, CNRS, LiPhy, 38000 Grenoble, France
- Institut Laue-Langevin, 71 Avenue des Martyrs, CEDEX 9, 38042 Grenoble, France
- Correspondence: (T.M.); (J.P.)
| | - Judith Peters
- Dept. of Physics, Univ. Grenoble Alpes, CNRS, LiPhy, 38000 Grenoble, France
- Institut Laue-Langevin, 71 Avenue des Martyrs, CEDEX 9, 38042 Grenoble, France
- Institut Universitaire de France, 75231 Paris, France
- Correspondence: (T.M.); (J.P.)
| |
Collapse
|